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ABSTRACT 

Infant mortality rate is one of the important health and development indicators in a country 

or community and that is why reduction of infant mortality has been the main target of 

public health policies for the past decades. Malawi, like many countries in the sub Saharan 

Africa is a country that suffers from the highest rates of infant mortality across the globe. 

Studies have been conducted to identify factors associated with infant mortality in Malawi 

but none of these studies used recent data. This study used the most recent survey data to 

identify the factors associated with infant mortality in Malawi by using survival analysis 

techniques and frailty modelling to control for unobserved heterogeneity using. The data 

used for this study was from the 2015-16 Malawi Demographic Healthy Survey (2015-16 

MDHS) and was obtained from DHS program website: https://www.dhsprogram.com. 

Bivariate analysis was conducted to identify variables that had significant association with 

infant mortality in Malawi using both Kaplan-Meier and log rank test and were 

subsequently considered into the cox proportional hazard model analysis to estimate their 

strength of effect on infant mortality in Malawi. The variables were also modelled using 

both the semi parametric cox frailty model and parametric frailty models to find the best 

fit model using the maximum likelihood estimation. The results showed that sex of 

household head, mothers’ age group, source of drinking water, religion, type of birth and 

place of delivery were significantly associated with infant mortality and that there are 

unobservable family effects which make infant deaths to cluster in some 

households/families. 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter introduces the study by first discussing the background and context, followed 

by the statement problem and objectives of the study. 

 

1.1 Background 

Infant mortality refers to the death of a child before reaching one year of age, and it is a 

global burden especially in developing countries like Malawi (Ndawala, 2015). Infant 

mortality includes prenatal mortality, neo natal mortality and postnatal mortality which are 

defined as death that occur in the first week after birth, death that occur within 28 days of 

birth and death that occur between 28 and 364 days after birth respectively (Ndawala, 2015) 

. Infant mortality rate (IMR) is sensitive to general structural factors like socio-economic 

development and basic living conditions, as such it is regarded as an important national 

health  indicator (Sartorius, Kurt, Sartorius, 2014).When a country has high infant mortality 

rate, it is an indication of unmet human health needs such as sanitation, medical care, 

nutrition and education (Treibe, 2009). The estimation of mortality in childhood 

traditionally focused on mortality below one year of age because mortality at early ages is 

highest among infants and also because measures of mortality for the age range 0 to 1 year 

can be obtained solely from registration data when those data are reliable (Nations, 1989). 

 

There is still a big gap in infant mortality between developing and developed countries. 

Research shows that 1 in 36 children dies during the first month of life (neonates) in Sub-

Saharan Africa, compared with 1 in 333 in developed countries (Ouatarra, 2018). The 

United Nation’s Sustainable Development Goal 3 (SDGs) seeks to put an end to avoidable 

new-born deaths before 2030, which contributes to infant mortality. Over 60 countries will 
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fail to meet the United Nation’s Sustainable Development Goal 3 if considerable progress 

is not made (Ouatarra, 2018). 

 

Research shows that there was a 2.5 percent annual decline in global child mortality 

between 1960 and 1990, with Sub-Saharan Africa (SSA) having the slowest decline, (Jahn 

et al, 2010) of about 1.0 percent in the 1960s, 2.0 percent between 1970 and 1985, and 1.0 

percent between 1985 and 1990. Resulting to an annual average decline of about 1.3 

percent between 1960 and 1990, (Hill, Kenneth, Amouzou, 2006).Children born in Sub-

Saharan Africa today have a life expectancy of 51 years and almost 10.0 percent of them 

die in the first year of life. Approximately 4.1 million deaths occurred globally within the 

first year of life in 2017, accounting for 75 percent (of all under-five deaths (Tesfa et al., 

2021). The contribution of infant deaths to overall child mortality has increased over the 

years and has reached 75.0 percent. It is important to target children under the age of 1 year 

(infants), and call for urgent and concerted action to further improve the survival chances 

of world's children (WHO, 2016). 

 

Progress in the reduction of infant and child mortality accelerated in the period 2000-2017 

as compared to the 1990s period with an annual rate reduction in the global under five 

mortality rates having increased from 1.9 percent in 1990-2000 to 4.0 percent in 2000-

2017.An estimated 5.4 million children under 5 years died in 2017, (Roser, Max, Ritchie, 

Hannah, Dadonaite, 2013) and half of all these deaths, about 2.7 million, took place in sub 

Saharan Africa, (Hug, Lucia, Sharrow, David, Zhong, 2018). Even though infant mortality 

significantly declined worldwide, the decline in SSA was unsatisfactory which was, 

92/1000 live births in 2000 to 53/1000 live births in 2018 (Tesfa et al., 2021). 

 

1.2 Problem Statement 

Malawi, like many countries in the Sub-Saharan Africa suffered from the highest rate of 

infant mortality. Malawi's infant mortality rate was at 37.828 deaths per 1000 live births in 

2020 (Plecher, 2020). In 2020, the mortality rate among children under the age of 1 year in 

Africa was around 41.6 deaths per thousand live births. Although infant mortality rate of 
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Malawi fell gradually from 164.75 deaths per thousand live births in 1971 to 36.08 deaths 

per thousand births in 2021, this infant mortality rate is still high. 

 

Infants are particularly vulnerable to their immediate living conditions and suffer the 

highest consequences of negative health outcomes from socio-economic issues and social 

disadvantages. As such, it is important that infant mortality be a focal point in societies to 

ensure that infant mortality levels are kept low. Studies have been conducted on infant 

mortality in Malawi but infant mortality rate is still high. To mention a few, (Madise & 

Diamond, 1995) used a logistic binomial model to analyze 1988 child spacing survey data 

to identify determinants of infant mortality and another study conducted by (Kalipeni & 

Moise, 2015)  that used 1990-2010 Malawi demographic and health survey (MDHS) data 

to assess the reduction of infant mortality. The aim of this study was to apply survival 

analysis techniques to identify factors associated with infant mortality in Malawi using the 

recent demographic and health survey dataset. 

 

1.3 Objectives 

i. To examine the association between infant mortality and determinants in 

Malawi 

ii. To examine the effects of unobserved heterogeneity (frailty) on infant 

mortality both at family and community level 

iii. To find the best fit model for infant mortality data 
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 CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Chapter Overview 

This chapter provides an overview of previous research on infant mortality which includes 

the methods used to conduct the studies, their findings and recommendations made. The 

chapter further provides an overview on survival analysis, frailty modeling and their 

different estimation methods.  

 

As discussed in chapter 1, many studies have been conducted on infant mortality and this 

is because infant mortality rate is considered to be one of the key health indicators in an 

economy (Nasejje, 2015).This chapter summarizes the literature on non-statistical issues 

of infant mortality and statistical methods used when analyzing infant mortality data. 

 

There are many classical modelling methods used in the examining of factors associated 

with infant mortality which include Bayesian analysis, logistic regression, Cox 

proportional hazard model (CPH) and simple correlation method, just to mention a few. 

However, Logistic regression analysis and CHP are the most commonly used method and 

that is why the two have been discussed further in this chapter. Logistic regression models 

the probabilities for classification problems with two possible outcomes i.e. this method 

requires a binary response variable. It is an extension of the linear regression model for 

classification problems, some of the basic assumptions that must be met for logistic 

regression include independence of errors, linearity in the logit for continuous variables, 

absence of multicollinearity, and lack of strongly influential outliers. Logistic regression 

however, does not determine the causal relationship between an independent variable and 

the outcome variable, but rather will allow for the describing of the variables associated to 

infant mortality (Dube, 2012).The logistic regression model was used by (Lemani, 2013)  

to study the survival of infant children in Malawi where it was claimed that the logistic 
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method has low statistical power on censored children compared to the Cox proportional 

hazard model, as such it is problematic to use it when the time to exposure is short and 

when the risk of experiencing an event of interest vary with time.  

 

Another method which is commonly used is the standard Cox proportional hazards model 

which is applicable when the interest is in time-to-event data and the data is assumed to be 

independent. Studies which use DHS data which is obtained from a cluster survey and 

assumed to be correlated violates the statistical assumption of interdependence when the 

standard Cox proportional hazard model is used and it does not adjust for unobserved 

confounders. In order to adjust for unobserved covariates there is need to use the Cox-

frailty model method to examine factors associated with infant mortality since this model 

assumes that the risk of death of an individual is a function of measured factors and a 

random term on the baseline hazard due to the unobserved cluster effect (Khan & Awan, 

2017) . It is important to use frailty modelling because of its capabilities in accounting for 

unobserved or unobservable risk factor effects in survival data analysis, (Niragire et al., 

2011). 

 

High infant mortality rates may increase fertility rates because families want to replace the 

lost children and high fertility rates pose a health risk to women and children. Research 

showed that in every year, an estimated 529 000 women die in pregnancy or childbirth 

(WHO, 2004) and the timing of births has an impact on child health in such a way that 

when a woman doesn’t have adequate child space, the new baby is often born underweight 

or premature, develops too slowly, and has an increased risk of dying before reaching the 

age of 1 year (Rustein, 2005). It was discovered that children born less than 2 years after 

the previous birth are about 2.5 times as likely to die before age 5 than children who are 

born 3–5 years apart (Setty-Venugopal, Upadhyay, 2002). 

 

Malawi is a country in the sub-Saharan region and is characterized by high infant and child 

mortality which was estimated to be 104 deaths per 1000 live births and 95 deaths per 1000 

live births respectively using data from the 2000 Malawi Demographic and Health Survey 

(Kalipeni & Moise, 2015).  
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Afeez et al. (2018) conducted a retrospective study to find out the risk factors responsible 

for infant mortality in Nigeria. Kaplan Meier curve was plotted to describe the rate of 

survival of some of the factors responsible for infant mortality. The log-rank test was used 

to test the null hypothesis that there is no difference between populations in the probability 

of an infant dying. The Cox-Proportional Hazard Model was fitted to assess the importance 

of various covariates in the survival times of infant through the hazard ratio. It was found 

that religion, sex of child, area of residence, economic status of the family and age of 

mother at birth are factors associated with infant mortality. 

 

A national time series of NMR (Neonatal Mortality Rate) and neonatal deaths, was 

estimated using the UN IGME (United Nations Inter-agency Group for Child Mortality 

Estimation) multilevel statistical model with random effects parameters for level regression 

parameters at country level. UN IGME used an abridged life table approach and to calculate 

the absolute number of deaths among infants and children under-five in a given year and 

country (Walker et al., 2012). It was reviewed how relevant data from civil registration, 

sample registration, population censuses, and household surveys are compiled and assessed 

for United Nations member states. It was also reviewed how time series regression models 

are fitted to all points of acceptable quality to establish the trends in U5MR (under-five 

mortality rate) from which infant and neonatal mortality rates are generally derived. The 

application of this methodology indicated that, between 1990 and 2010, the global U5MR 

fell from 88 to 57 deaths per 1,000 live births, and the annual number of under-five deaths 

fell from 12.0 to 7.6 million(Walker et al., 2012). Although the annual rate of reduction in 

the U5MR accelerated from 1.9 percent for the period 1990-2000 to 2.5 percent for the 

period 2000-2010, it remains well below the 4.4 percent annual rate of reduction required 

to achieve the MDG 4 goal of a two-thirds reduction in U5MR from its 1990 value by 2015 

(Walker et al., 2012). 

 

A study on infant mortality and causes of infant deaths in rural Ethiopia conducted by 

Weldearegawi et al (Weldearegawi et al., 2015),  used multiple Cox proportional Hazards 

regression model to investigate risk factors for infant death and causes of infant death were 

identified using physician review verbal autopsy method. It was found that mother’s level 
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of education, mother’s age, pre-mature birth, respiratory infections and sepsis were the 

common causes of infant death. 

 

A study conducted by (Nutiye, 2009) aimed to examine factors that are correlated with 

infant mortality in Turkey. The study used survival analysis and logistic regression to 

analyze data from the 2003-2004 Turkey demographic and health survey. The results of 

the study showed that birth interval is associated with infant mortality, breastfeeding is 

important for the survival chance of the infants under the age 3 months. Place of delivery 

and source of water the family uses were also found to be correlated with infant mortality. 

There was also a curvilinear relation between maternal age at birth and infant mortality 

which indicated high risk for infants born from teenage mothers and old age mothers 

(Nutiye, 2009). 

 

(Bolstad & Manda, 2001) conducted a study where they investigated child mortality in 

Malawi using family and community effects and applied a Bayesian analysis method. The 

study found that early succeeding conception and short breastfeeding duration are the 

factors that have the highest in-creased risk for a child. (Bolstad & Manda, 2001)also found 

that there was more variability due to family effects than community effects in child 

mortality. They further learned from the random effects model that infant and early child 

deaths tend to cluster in some families and, to a lesser extent, in some communities. The 

family variation summarizes the effects of biological, genetic, parental competence whilst 

community variation summarizes the effects of differing community cultures and customs 

which were not accounted for in the fixed effect model. 

 

2.2 Logistic Regression 

Logistic regression is one of the most commonly used model for applied statistics and 

discrete data analysis. The logistic regression is a statistical analysis method used to explain 

the relationship between a dependent variable and one or more independent variables. This 

regression method is one of the generalized linear models with a logit link and works very 

similar to linear regression, with the exception that the response (dependent) variable is 

binomial taking the value of 1 if the event of interest occurred and 0 otherwise (Sperandei, 
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2016). The Logistic regression model is one of the most popularly used model in child 

mortality studies because it assumes that child survival is a binary response, child is dead 

or alive (Kazembe et al., 2012). Log-odds play an important role in logistic regression as 

it converts the logistic regression model from probability based to a likelihood based 

model. 

 

The Logistic regression model equates the logit transform, the log-odds of the probability 

of a success, to the linear component as shown below; 

 

 

 log (
𝑝𝑖

1−𝑝𝑖
) = ∑ 𝑥𝑖𝑘𝛽𝑘

𝑘
𝑘=0                  𝑖 = 1,2, … , 𝑛             2.1     

 

Where k is the number of independent variables specified in the model, p is the probability, 

x is an independent variable, 𝛽 is the regression coefficient, i is the subject and n is the 

sample size. The probability p in terms of the explanatory variable x is given by; 

 

𝑝𝑖 =  
exp (𝛽0+𝛽𝑖𝑥𝑖)

1+exp (𝛽0+𝛽𝑖𝑥𝑖)
                                       2.2 

 

 Where: 

 

𝑝𝑖is the probability that the event of interest will occur 

𝛽0is the intercept 

𝛽𝒊  is the regression coefficient for the explanatory variable xi 

 

2.2.1 Maximum Likelihood function for Logistic Regression 

Maximum likelihood estimation is a probabilistic framework for estimating the parameters 

of a model. The logistic regression goal is to estimate the k+1 unknown parameters in Eq. 

2.2. The maximum likelihood equation is derived from the probability of the dependent 

variable. Each yi represents a binomial count in the ith population as such the joint 

probability density function of Y is given by; 
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 𝑓(𝑦|𝛽) = ∏
𝑛𝑖!

𝑦𝑖!(𝑛𝑖−𝑦𝑖)!
𝑝𝑖

𝑦𝑖(1 − 𝑝𝑖)
𝑛𝑖−𝑦𝑖𝑛

𝑖=1                2.3 

 

And the likelihood function is given as; 

 

 𝐿(𝛽|𝑦) = ∏
𝑛𝑖!

𝑦𝑖!(𝑛𝑖−𝑦𝑖)!
𝑝𝑖

𝑦𝑖(1 − 𝑝𝑖)
𝑛𝑖−𝑦𝑖𝑛

𝑖                       2.4 

 

The values for β that maximize the likelihood function in Eq. 2.4 are called the maximum 

likelihood estimates and these estimates are found by computing the first and second 

derivative of the likelihood function since critical points occur when the first derivative is 

a zero and if the second derivative is less than zero, then the critical point is a maximum.  

 

Note that the factorial terms do not contain any of the  𝑝𝑖 as a result, they are essentially 

constants that can be ignored. Also,𝑎𝑥−𝑦 =
𝑎𝑥

𝑎𝑦, therefore the likelihood function can be 

rearranged and written as; 

 

 ∏ (
𝑝𝑖

1−𝑝𝑖
)

𝑦𝑖

(1 − 𝑝𝑖)
𝑛𝑖𝑛

𝑖  

 

Exponentiating both sides of Eq. 2.1 it becomes; 

 

𝑝𝑖

1 − 𝑝𝑖
= 𝑒∑ 𝒙𝒊𝒌𝜷𝒌

𝒌
𝒌=𝟎  

 

And solving for 𝑝𝑖 result it; 

𝑝𝑖 =
𝑒∑ 𝒙𝒊𝒌𝜷𝒌

𝒌
𝒌=𝟎

1 + 𝑒∑ 𝒙𝒊𝒌𝜷𝒌
𝒌
𝒌=𝟎

 

 

 

After substituting for𝑝𝑖 =
𝑒∑ 𝒙𝒊𝒌𝜷𝒌

𝒌
𝒌=𝟎

1+𝑒
∑ 𝒙𝒊𝒌𝜷𝒌

𝒌
𝒌=𝟎

in equation 2.4 and simplifying its yield the log 

likelihood function; 
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𝑙(𝛽) = ∑ 𝑦𝑖 (∑ 𝑥𝑖𝑘𝛽𝑘

𝑘

𝑘=0

) − 𝑛𝑖 . log (

𝑁

𝑖=1

1 + 𝑒∑ 𝒙𝒊𝒌𝜷𝒌
𝒌
𝒌=𝟎 ) 

 

Differentiating the log likelihood function with respect to each βk it becomes; 

 

𝜕𝑙(𝛽)

𝜕𝛽𝑘
= ∑ 𝑦𝑖𝑥𝑖𝑘 − 𝑛𝑖𝑝𝑖𝑥𝑖𝑘

𝑁
𝑖=1                                   2.5 

 

Critical points can be found by setting each of the k+1 equations in 2.5 equal to zero and 

solving for each βk. The critical point will be a maximum if the second partial derivatives 

is a negative definite. The second partial derivative is; 

 

𝜕2𝑙(𝛽)

𝜕𝛽𝑘𝜕𝛽𝑘,
= -∑ 𝑛𝑖𝑥𝑖𝑘𝑝𝑖(1 − 𝑝𝑖)𝑥𝑖𝑘,

𝑁
𝑖=1  

 

2.2.2 Interpreting Parameters 

Recall the logistic model; 

 

log (
𝑝𝑖

1 − 𝑝𝑖
) = ∑ 𝑥𝑖𝑘𝛽𝑘

𝑘

𝑘=0

                                𝑖 = 1,2, … , 𝑁 

 

Where
𝑝𝑖

1−𝑝𝑖
  is the odds of an event occurring. The regression coefficient in the population 

model is the log odds ratio, log(OR) , which is the difference between two log odds and 

can be used to compare the odds between two groups. The OR is obtained by 

exponentiating  β; 

 

𝑒𝛽 = 𝑒log 𝑂𝑅 = 𝑂𝑅 

 

 

We interpret OR > 1 as indicating a risk factor and OR < 1 indicating a protective factor. 
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2.3 Survival Analysis 

Survival analysis is one of the highly active areas of research and is applied in many fields 

of study which include engineering, physical, biological and social sciences (Nasejje, 

2015). Survival analysis is a statistical method or tool which is used to analyze time to 

events data and the time variable is usually referred to as survival time, because it gives 

the time that an individual has “survived" over some follow up period. An outcome that is 

of scientific interest is called an event and this event is observed in different studies like 

sociology, biology, demography, medicine and employment (Nasejje, 2015). An event is 

typically referred to as a failure. This is so because the event of interest is usually death, 

disease incidence, or some other negative individual experience. However, survival time 

may be something other than a failure such as “time to return to work after an elective 

surgical procedure," "time of courtship to wedding," in which case failure is a positive 

event. In survival analysis the interest lies in the time for an event of interest to occur from 

a given baseline and in this paper we are interested in the time it takes for an infant to die 

from birth. This technique allows one to depict the pattern of experiencing a survival event 

over time. There are four fundamental functions in survival analysis which include the 

cumulative probability function F(t), the survival function S(t), the hazard function h(t) and 

the cumulative hazard function H(t) (Nyinawajambo, 2018). 

 

2.3.1 The survival Function 

Assuming T is a continuous random variable with probability density function (p.d.f.) f(t) 

and cumulative survival/failure function, F(t) = Pr(T < t), the survival function S(t) is given 

by; 

 

𝑆(𝑡) = Pr (𝑇 ≥ 𝑡)=1 − 𝐹(𝑡)=∫ 𝑓(𝑥)𝑑𝑥
∞

𝑡
                                2.6 

 

The expression above is the probability of surviving beyond time t. The survival function 

is usually a downward sloping curve with time at the x-axis and survival probability at y 

axis (Lemani, 2013), as indicated in the figure 1 below. The survival function S(t) is a non-

increasing function, S(0) =1 and S(∞) = 0. 
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Figure 1: Survival Function 

 

2.3.2 The Hazard Function 

Given a set containing individuals who are at a risk of experiencing a certain event denoted 

by R(t) (risk set) where t represents the time, then the probability of an individual in the 

risk set experiencing the event in the small time interval[t; t + Δt] is defined as h(t) Δt and 

the hazard rate is given as; 

 

ℎ(𝑡) = lim
Δ𝑡→0

1

Δ𝑡
𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡|𝑇 ≥ 𝑡)                               2.7 

 

The hazard function characterizes the risk of dying that is changing over time and it takes 

on any shape of a non-negative function and it varies depending on the type of survival 

data given unlike the survival function which is a downward sloping curve for any type of 

given survival data (Nyinawajambo, 2018). Some hazard functions, e.g. the exponential 

survival function has a constant hazard rate, meaning it does not change with time. 

 

Non-parametric, semi-parametric and parametric methods exist for survival methods and 

these methods are discussed in the next section. 
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2.3.3 Non-Parametric Methods 

Non-parametric methods are methods that do not make assumptions about a population’s 

parameters, they are sometimes called “distribution free methods”. Non-parametric 

methods are used to summarize survival data through estimates of the hazard and survival 

function. The aim of non-parametric estimation of the survival function is to come up with 

graphical summaries of the survival times for a given group of individuals considered in a 

study. Non-parametric methods for survival analysis include Life-table, log-rank and 

Kaplan Meier. 

 

(i) Kaplan Meier Estimator 

The Kaplan Meier estimator was originally derived as a non-parametric maximum 

likelihood estimator of a function and as a limit of the actuarial estimator as the time axis 

is partitioned into fine intervals. It is a non-parametric statistic, which is also known as the 

product limit estimator which is used to estimate the probability of dying (the hazard 

probability), the probability of surviving and median survival time. The Kaplan Meier 

estimator uses the exact failure time to give a simple and quick estimate of the survival 

function in presence of censoring (Lemani, 2013). It is denoted as; 

 

                    𝑆(𝑡̂) = ∏𝑡𝑖<𝑡 (1 −
𝑚𝑖

𝑟𝑖−1
)                                           2.7 

 

Where 𝑚𝑖 represents the number of deaths at time i, and  𝑟𝑖 − 1 represent the number of 

subjects at the start of the study. Kaplan Meier technique takes into account both censored 

and uncensored observations and assumes that censored times are independent to survival 

times while estimating survival probabilities. This technique divides the follow-up period 

into a number of small intervals and number of cases for each interval is determined and a 

probability of surviving to the end of that time period is obtained when the surviving 

proportion is multiplied by the surviving proportions for each of the preceding time periods 

(Damato et al., 2011).The survival probability is then plotted against time. Thus, survival 

function could be estimated using the Kaplan Meier graph. Under this graphical technique, 

bivariate analysis of infant survival was depicted within and across districts using the DHS 

data (Lemani, 2013). 
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(ii) Life Tables 

The life table procedure is a conventional approach used since the 18th century to analyze 

the distribution of mortality in a population. It takes into account information from 

censored cases whose full observation period will not have elapsed at the time of interview 

and whose survival outcome cannot therefore be recorded. The life table will allow 

depicting survival ratios and failure rate at every time interval (WHO et al., 2013). This 

method is an alternative method of Kaplan-Meier method with particularity of being able 

to assess the survivorship function of groups of individuals even though there is no survival 

information at individual level. 

 

𝐿𝑒𝑡  𝐼𝑡 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑙𝑖𝑣𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡, 

 𝑑𝑡 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

 

Then the probability of dying during the time interval is given by;  

 

𝑞𝑡 =  
𝑑𝑡

𝐼𝑡
 

 

And the probability of dying during the time interval; 

 

𝑝𝑡 = 1 − 𝑞𝑡 

 

(iii) Log Rank Test 

The log rank test is a large-sample chi-square test that provides an overall comparison of 

the Kaplan Meier curves being compared by using a statistic as a test criterion. Just like 

many other statistics used in other kinds of chi-square tests, this log rank statistic makes 

use of observed versus expected cell counts over categories of outcomes and the categories 

for this log-rank statistic are defined by each of the ordered failure times for the entire data 

being analyzed. The null hypothesis being tested is that there is no overall difference 

between two survival curves. The log-rank statistic is approximately chi-square with one 

degree of freedom under this null hypothesis. The log rank test however, does not provide 
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an estimate of the size of the difference between groups or a confidence interval because it 

is purely a test of significance. 

 

2.3.4 Semi-Parametric Methods 

(i) Cox Proportional Hazard Regression Model 

The Cox-proportional hazard model is essentially a commonly used survival regression 

model in medical research for investigating the association between the survival time of 

patients and one or more predictor variables. It is called a semi-parametric method because 

the distribution for the baseline hazard function is not specified. The Cox model was 

introduced in 1972 and has the form; 

 

                     λ(𝑡|𝑋) = 𝜆0(𝑡)exp (𝑋𝑇𝛽)                                        2.8 

 

Where λ(𝑡|𝑋) is the hazard at time t, for an individual with covariate X, 𝜆0(𝑡) denotes the 

baseline hazard function and assumed to be unique for all individuals in the study 

population, X is the vector of observed covariates and βthe respective vector of regression 

parameters to be estimated(Cox, 1972). There are several important assumptions for 

appropriate use of the Cox proportional hazard regression model which include, 

independence of survival times between distinct individuals in the sample, a constant 

hazard ratio over time and a multiplicative relationship between the predictors and the 

hazard i.e. proportional hazard. The Cox model cannot be used in a situation where the 

assumption of proportional hazard is violated because it assumes hazard proportionality. 

The hazard ratio is the measure of the effect of the given covariates on survival time. For 

Example, given a categorical variable with two levels say X = 1 and X = 0 , where group 

1 have chemo before surgery and group 0 have chemo after surgery to compare the hazard 

of death from cancer, the hazard ratio for the two groups is given as; 

 

                      𝐻𝑅 =
ℎ(𝑡|𝑋=1)

ℎ(𝑡|𝑋=0)
= exp (𝛽)                                      2.9 

 

When HR = 1, it implies that the individuals in the two categories are at the same hazard 

risk of dying, when HR > 1, it implies that the individuals in the first category (X = 1) are 
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at a higher hazard of dying and if HR < 1, the individuals in the second category (X = 0) 

are at a higher hazard of dying. 

 

2.4 Cox-Fraitly Models 

Proportional hazards (PH), and in particular the semi-parametric Cox model play a major 

role in the modelling of continuous event times (Wienke, 2003).The Cox model assumes 

the semi-parametric hazard; 

 

            𝜆(𝑡|𝑥𝑖) = 𝜆0(𝑡)exp (𝑥𝑖
𝑇𝛽)                                             3.0 

 

Frailty models aim at modelling the heterogeneity in the population, they can be used to 

account for the influence of unobserved covariates (Vaupel & Manton, 1979). The 

Parameter θ provides information on the variability (dependency) of the population in the 

same family or community. However, parameter estimation in frailty models is more 

challenging than in the Cox model since the corresponding profile likelihood has no closed 

form solution. In the Cox PH frailty model also known as the mixed PH model, the hazard 

rate of subject j belonging to cluster i with ni subjects, conditionally on the covariates xij 

and the shared frailty bi is given by; 

 

𝜆𝑖𝑗(𝑡|𝑥𝑖𝑗, 𝑏𝑖) =𝑏𝑖𝜆0(𝑡) exp(𝑥𝑖𝑗
𝑇 𝛽)                                𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛𝑖      

 

Where bi is the frailty term and frequently assumed to follow a gamma distribution because 

of its mathematical convenience. There are two categories of frailty models which are the 

univariate frailty models that consider univariate survival times and the multivariate frailty 

models that take into account multivariate survival times (Wienke, 2003).The frailty, bi , 

is an unobservable random variable varying over the sample which increases the individual 

risk if b > 1 or decreases if b < 1. When b > 1 (frailty is greater than one) an individual is 

said to be at an increased hazard of failure therefore more frail than an average individual 

in a cluster whilst when b < 1 the individual has a lower risk or is less frail therefore tends 

to survive longer (Nasejje, 2015). 
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2.4.1 Univariate Frailty Models 

Univariate frailty models take into account the non-homogeneity of a population. 

Unobserved heterogeneity comes about when important covariates have not been observed 

even though heterogeneity maybe explained by covariates. (Vaupel & Manton, 1979) 

introduced univariate frailty models (with a gamma distribution) into survival analysis to 

account for unobserved heterogeneity or missing covariates in the study population. This 

idea assumed that different patients possess different frailties and that the patients who are 

more "frail" or "prone" tend to have the event earlier that those who are less frail. Assuming 

that an individual child under the age of  i where i = 1, 2,…, n has a survival time denoted 

as 𝑡𝑖 and the covariate vector Xi has a frailty term denoted as 𝑏𝑖, then the survival function 

of individual i conditional on the frailty is given by; 

 

𝑆𝑖(𝑡𝑖, 𝑋𝑖|𝑏𝑖) = 𝑒𝑥𝑝 (−𝑏𝑖𝑒
𝑥𝑖

𝑇𝛽 ∫ ℎ0
𝑡𝑖

0
(𝑠, 𝑋𝑖|𝑏𝑖)𝑑𝑠) = 𝑒𝑥𝑝(−𝑏𝑖𝐻0(𝑡𝑖)𝑒𝑥𝑝(𝑥𝑖

𝑇𝛽)                3.1 

 

Where 𝐻0(𝑡𝑖) = ∑ ℎ0
𝑡𝑖
0 (𝑠)𝑑𝑠 is the cumulative baseline hazard function (Nasejje, 2015).  

Also assuming that the frailty follows a gamma distribution (𝛼= 𝛽), with mean E(B)=1, 

variance V (B) = 
1

𝛼
 and the variance of b, the frailty term is denoted as 𝜃, then V(B) =

1

𝛼
=

𝜃. The probability of a one parameter Gamma distribution f(b): 

 

𝑓(𝑏) =
𝛼𝛼𝑏𝛼−1exp (−𝛼𝑏)

Γ(𝛼)
 

 

Substituting 
1

𝛼
= 𝜃 we obtain; 

                                                                 𝑓(𝑏) =
𝑏

1
𝜃

−1
𝑒

−𝑏
𝜃 exp (−𝛼𝑏)

Γ(
1

𝜃
)𝜃

1
𝜃

                                3.2 

 

Now, letting T denote the random variable representing the survival times and b denote the 

frailty with the Gamma distribution, then the conditional survival function is given by: 

 

𝑆𝑖(𝑡|𝑏) = exp(−𝑏𝐻0(𝑡)) 
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The z is then integrated out from the conditional survival function which gives the 

unconditional survival function below; 

 

                  𝑆𝑖(𝑡) = 𝐸[𝑆(𝑡|𝑏)] = ∫ 𝑒−𝑏𝐻0 exp(𝑋𝑖
𝑡𝛽)(𝑡)𝑓(𝑏)𝑑𝑏=𝐿(𝐻(𝑡))∞

0
                         3.3 

 

Where L denotes the Laplace transform. The likelihood is then calculated as; 

 

     𝐿(𝑡, 𝑋𝑖, 𝛽, 𝜃) = ∏ ∏ 𝑏𝑖
𝛿𝑖ℎ0(𝑡𝑖𝑗)

𝛿𝑖
𝑒𝑥𝑝(𝛿𝑖𝑋𝑖𝑗

𝑇 𝛽), [𝑆(𝑡𝑖𝑗)]1−𝛿𝑖
𝑛𝑖
𝑗=0

𝐺
𝑖=0 ,                       3.4 

 

Where G denotes the total number of clusters in the data set and ni denotes the total number 

of individuals in cluster i. 

 

2.4.2 Multivariate Frailty Models 

Multivariate frailty models have been used frequently for modelling dependence in 

multivariate time-to-event data. The aim of the frailty is to take into account the presence 

of the correlation between the multivariate survival times. Multivariate models with 

dependent random hazards provide a multivariate extension of the traditional univariate 

frailty model. Application of frailty models in the field of multivariate survival data is 

important because such kind of data occurs for example if lifetimes (or times of onset of a 

disease) of relatives (twins, parent-child) or recurrent events like infections in the same 

individual are considered. The independence between the clustered survival times cannot 

be assumed in such cases which where Multivariate models come in since they are able to 

account for the presence of dependence between these event times (Wienke, 2003). The 

dependence structure in the multivariate model arises from a latent variable in the 

conditional models for multiple observed survival times. 

 

2.4.2.1 Shared Frailty Model 

The shared frailty model is relevant to event times of related individuals, similar organs 

and repeated measurements. This model is called a shared frailty model because individuals 
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in a cluster are assumed to share the same frailty (Wienke, 2003).Frailty is assumed to be 

independent across the groups or clusters while the survival times of individuals within the 

same group are conditionally dependent (Nasejje, 2015). A shared frailty model in survival 

analysis is defined as follows; 

 

Let bi denote the shared frailty that are assumed to be identically and independently 

distributed random variables,  Tij denote the survival time of the jth individual in the ith 

cluster given n clusters with ni individuals and vector Xij associated with the survival 

time(Wienke, 2003), then the hazard function of the jth individual of the ith cluster is given 

as: 

 

                            ℎ𝑖𝑗(𝑡) = 𝑏𝑖ℎ0(𝑡)exp (𝑋𝑖𝑗
𝑇 𝛽)                                    3.5 

 

2.4.3 Parameter Estimation 

To obtain the derived estimates of the parameters, the likelihood function is differentiated 

with respect to the parameters in the model and the resulting equations are then solved 

simultaneously. Due to the presence of latent variables it is not usually possible to solve 

the equations simultaneously with frailty models (Nasejje, 2015) and this requires us to use 

a more advanced method. Some of these advanced methods include; 

 

. The Expectation-Maximisation Algorithm (EM-Algorithm); 

. The Markov Chain Monte Carlo (MCMC) methods; 

. The Monte Carlo EM (MCEM) approach; 

. The penalised partial likelihood (PPL). 

 

The EM algorithm and the Penalised Partial likelihood methods are mainly used when the 

survival data is right censored. With complicated forms of censoring like interval and left 

censoring, more advanced Frailty modelling methods have to be used to estimate the 

parameters of the model. Markov Chain Monte Carlo methods (MCMC) are the alternative 

methods that can be used to estimate parameters of parametric frailty models in 
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circumstances where there exists left and interval censored data points in the data set 

(Nasejje, 2015). 

 

(i) The Expectation-Maximisation Algorithm (EM-Algorithm) 

Given the full likelihood 𝐿𝑓𝑢𝑙𝑙(𝑡𝑖, ℎ0, 𝛽, 𝜃) and assuming that the frailties follow a gamma 

distribution then the full likelihood of a shared frailty model of a cohort consisting of N 

individuals, where each individual is assigned to a cluster and with a total number G 

clusters where each cluster consists of ni number of individuals is given by: 

𝐿𝑓𝑢𝑙𝑙(𝑡𝑖 , ℎ0, 𝛽, 𝜃) = ∏ ∏ 𝑏𝑖
𝛿𝑖ℎ0(𝑡𝑖𝑗)

𝛿𝑖
𝑒𝑥𝑝(𝛿𝑖𝑋𝑖𝑗

𝑇 𝛽)exp (𝛿𝑖𝐻0(𝑡𝑖𝑗))

𝑛𝑖

𝑗=1

𝐺

𝑖=0

= ∏
𝑏

𝑖

1

𝜃
+𝐷𝑖−1

𝑒𝑥𝑝 (
−𝑏𝑖

𝜃
)

Γ(
1

𝜃
)𝜃

1

𝜃

𝐺

𝑖=1

 

 

 

Where Di is the total number of events in the cluster i. The EM-algorithm method requires 

the initial estimates for β, H0(tij) and 𝜃( 𝛽,̂ 𝐻̂0(𝑡𝑖𝑗) and 𝜃 ̂respectively) be found. The model 

with no frailties  is used to get the initial estimates  𝛽̂𝑎𝑛𝑑 𝐻̂0(𝑡𝑖𝑗) and then use the obtained 

estimates together with 𝛽 = 0 to get the expected values of the frailty terms (𝑏𝑖𝑠) (Nasejje, 

2015).For the Gamma frailty model, (Hanagal, 2011) argues that the distribution of the 

frailty terms bi is a Gamma with the shape and scale parameters 𝛼 ̂ =
1

𝜃+𝐷𝑖
 and 𝜃 =

1

𝜃
+

 ∑ 𝐻0𝑗 (𝑡𝑖𝑗)𝑒𝑥𝑝𝑋𝑖𝑗
𝑇 𝛽. Therefore the expected value of the frailties is given by; 

 

𝐸(𝑏𝑖) =
𝛼̂𝑖

𝜃𝑖

 

 

𝐸(ln(𝑏𝑖)) = 𝜓(𝛼̂𝑖) − ln (𝜃𝑖) 

 

Where 𝜓(. )is a Di-gamma function given by; 
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𝜓 =
Γ′(𝛼)

Γ(𝛼)
 

 

To obtain the estimates of β and ℎ0 at the M-step, the expected values of the frailty terms 

are plugged into the modified partial likelihood (Nasejje, 2015) and the modified partial 

likelihood is given by: 

 

                                  𝐿(𝛽) = ∏
exp (𝑏̂𝛽𝑠𝑘)

(∑ 𝑏𝑙𝑒𝑥𝑝(𝑋𝑙
𝑇𝛽𝑙𝜖𝑅(𝑡𝑘) ))

𝑑𝑘

𝑀
𝑘=1                   3.6 

 

 

Where 𝑡𝑘 is the smallest failure time, 𝑑𝑘 is the number of failures at time 𝑡𝑘, 𝐷𝑘 is the set 

of all individuals who fail at time 𝑡𝑘 and 𝑆𝑘 = ∑ 𝑥𝑗𝑗𝜖𝐷𝑘
. The maximum likelihood estimate 

for the baseline hazard function is obtained from the expression below: 

 

                                    𝜆0𝑘̂=
𝑑𝑘

∑ 𝑏𝑙𝑒𝑥𝑝(𝑋𝑙
𝑇𝛽)𝑙𝜖𝑅(𝑡𝑘)

                 3.7 

 

To find the estimates of 𝜃, the estimates of 𝛽̂, 𝑏̂𝑖 𝑎𝑛𝑑 𝜆̂0 are plugged in. 

 

(ii) The Markov Chain Monte Carlo Methods (MCMC) 

Another method in parameter estimation for frailty methods is the MCMC method. These 

methods are statistical simulation techniques, Instead of writing down complex system of 

equations, a process is directly simulated given the probability density functions that 

describe it. Given the probability density functions (p.d.f's), its initial defining parameters 

and current values of the other parameters, the simulation process begins by iteratively re-

sampling each parameter (Nasejje, 2015). They are known as Markov Chain Monte Carlo 

(MCMC) methods because one uses the previous sample values to generate randomly the 

next sample values which results into a Markov chain. An MCMC method consists of 

generating a set of Markov chains whose joint stationary distribution corresponds to the 

joint posterior of the model (Wienke, 2003). The posterior distribution is often very 

difficult to work with in a hierarchical model and almost always impossible to integrate 
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out in order to find the marginal posterior of each random parameter but the MCMC 

methods enable us to overcome this problem (Wienke, 2003) .  

 

The Gibbs sampling is one of the algorithms that have been created in order to obtain 

Markov chains with the desired stationary distribution. Gibbs sampling is used to fit frailty 

models on clustered failure time data with right censored observations, by sampling 

iteratively from the full conditional distribution of the parameters in the model (Nasejje, 

2015). The basic idea behind the Gibbs sampling is to successively sample from the 

conditional distribution of each random node, given all the others in the model (Wienke, 

2003). 

 

2.5 Survival Analysis Parametric Methods 

A parametric survival model is a well-recognized statistical technique for exploring the 

relationship between the survival of a person, a parametric distribution and several 

explanatory variables. It allows us to estimate the parameters of the distribution. Parametric 

survival analysis models typically require a non-negative distribution and the distributions 

that work well for survival data include the exponential, Weibull, gamma and lognormal 

distributions. There are two parametric methods which are commonly used in survival 

analysis which include the parametric proportional hazards model and the Accelerated 

failure time (AFT) model. 

 

(a) Parametric Proportional hazards model 

Parametric proportional hazard models are used to describe proportional hazards models 

in which the hazard function is specified i.e. when proportional hazard models are 

formulated with assuming a probability distribution for survival times, this leads to 

parametric models (Khosa, 2019). It was advocated by (Gong & Fang, 2013)to use  

parametric proportional hazard models for the analysis of interval censored data. Let 

consider the analysis of survival data when one is to assume a parametric form of 

distribution of survival time. Let T denote a continuous non-negative random variable 

representing survival time with p.d.f. (probability density function) f(t)and c.d.f. 

(cumulative density function) F(t) =Pr(𝑇 ≤ 𝑡). 
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Let Λ(𝑡) = ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0
 denote the cumulative hazard. Recall that 𝑆(𝑡) = exp{−Λ(𝑡)}. Any 

distribution defined for t𝜖[0, ∞) can serve as a survival distribution. Some of the 

distributions that are commonly used include Exponential, Weibull, Geompertz-Makeham 

and Gamma. 

 

All parametric models can be fit by maximizing the appropriate likelihood function. Let 

data consist of pairs (𝑡𝑖 , 𝑑𝑖) where; 

 𝑡𝑖 is the survival or censoring time  𝑎𝑛𝑑 𝑑𝑖 is  a death indicator 

The likelihood function under general non-informative censoring has the form; 

 

            𝐿(𝜃) = ∏ 𝜆(𝑡𝑖|𝑥𝑖)𝑑𝑖𝑆(𝑡𝑖|𝑥𝑖)
𝑛
𝑖=1                 3.8 

 

And in general must be maximized numerically. 

 

(b) Accelerated failure time (AFT) model 

 

The Acceleration failure time model is a parametric model which was introduced by (Cox, 

1972) and it is known as accelerated failure time model because of the term “failure” which 

indicates the event of interest which could be death, disease etc. The term “Accelerated” 

indicates the responsible factor for which the rate of failure is increased and that factor is 

referred to as the “Acceleration factor” (Saikia & Barman, 2017).  

 

If the appropriate parametric form of AFT model is used then it offers a potential statistical 

approach in case of survival data which is based upon the survival curve rather than the 

hazard function. In AFT model, the dependent variable is log of the survival time T, and 

the assumption is that the effect of covariates act multiplicatively (proportionally) with 

respect to the survival time. 

 

A semi-parametric model is a statistical model that has parametric and non-parametric 

components. Survival semi-parametric methods are called semi-parametric because while 

the hazard function is estimated non-parametrically, the functional form of the covariates 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Nonparametric
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is parametric and this is a strength because the non-parametric estimate of the hazard 

function offers much greater flexibility than most parametric approaches. Semi-parametric 

models have few assumptions which makes them a popular choice, however, parametric 

model provide greater efficiency in such a way that only a few parameters are estimated 

and this model is comparatively easy to interpret. It also provides the ability to extrapolate 

beyond the range of the data. Parametric models do have challenges which include 

choosing a reasonable distribution to run the models. 

 

The standard Cox proportional hazards model is applicable when time-to-event data are 

independent and our Study is going to use DHS data which is obtained from a cluster survey 

and assumed to be correlated as such the statistical assumption of interdependence is 

violated if the standard Cox proportional hazard model is used as such we are going to use 

the Cox-frailty model which accounts for both observed and unobserved effects. It is also 

important to consider the possibility that some children are frailer than others i.e. some 

children are more likely to experience the hazard than others as such there is need to use 

the Cox-frailty model that captures total effects of all factors that influence the child's risk 

of death that are not included in the standard Cox-proportional hazard model. 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

 

In this chapter the first section describes the data sources and the second section describes 

the methods that will be used for data analysis. 

 

3.1 Data Sources 

The data for this study is from the 2015-16 Malawi Demographic Healthy Survey (2015-

16 MDHS) which was implemented by the National Statistical Office from 19 October 

2015 to 17 February 2016. The funding for the 2015-16 MDHS was provided by the 

government of Malawi, the United States Agency for International Development (USAID), 

the United Nations Children’s Fund (UNICEF), the Malawi National AIDS Commission 

(NAC), the United Nations Population Fund (UNFPA), UN WOMEN, Irish Aid, and the 

World Bank (National Statistical Office (NSO), 2017). The DHS program is a USAID 

project to assist developing countries worldwide in collecting and monitoring data to 

evaluate the population, health and nutrition programs. All official raw data and reports 

from all countries where DHS is application can be accessed through 

https://www.dhsprogram.com. The primary objective of the 2015-16 MDHS was to 

provide estimates of basic demographic and health indicators. 

 

The survey was based on a nationally representative sample which provided estimates at 

the national and regional levels and for urban and rural areas with key indicator estimates 

at the district level. The survey included 26,361 households, 24,562 female respondents, 

and 7,478 male respondents. The 2015-16 MDHS included household and respondent 

characteristics, fertility and family planning, infant and child health and mortality, maternal 

health and maternal and adult mortality, child and adult nutrition, malaria, HIV/AIDS, 
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domestic violence, orphans, and vulnerable children. The sampling frame used for the 

2015-16 MDHS is the frame of the Malawi Population and Housing Census (MPHC), 

conducted in Malawi in 2008, and provided by the Malawi National Statistical Office 

(NSO). The 2015-16 MDHS sample was stratified and selected in two stages. Each district 

was stratified into urban and rural areas; this yielded 56 sampling strata. Samples of 

standard enumeration areas (SEAs) were selected independently in each stratum in two 

stages. 

 

 Infant and child mortality data was collected as part of a retrospective birth history in 

which female respondents listed the children they have born, child's date of birth, 

survivorship status, current age or age at death which they used to indirectly and directly 

estimate infant mortality rate. 

 

Table 1: Selected Variables 

Variables (DHS Codes) Label  

B7 Age at Death (Months, Imputed)  

B5 Child is alive  

B3 Date of birth (CMC**)  

V008 Date of interview(CMC)  

V106 Mother Highest education level  

V190 Socio-Economic Status of the 

Family  

B4 Sex of child  

B0 Type of birth 

V113 Source of drinking water 

V151 Sex of household head 

M15 Place of delivery 

V102 Area of residence 

M18 Size of child at birth 

V130 Religion 

V013 Mothers’ age group 
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3.1.2 Measurements of study variables 

• Outcome variable 

In this study the dependent variable was infant mortality was defined as the death of a child 

under the age of 1 year and this variable was measured as a binary response: yes or no. All 

births that occurred within 5 years before the date of interview were included.  There was 

no specific variable for the survival time in the dataset as such the children survival times, 

in years, who were alive were calculated by subtracting the date of birth (CMC- century 

month code) from the date of interview (CMC) and then dividing by 12 to get survival time 

in months as shown below; 

 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑖𝑣𝑒 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

=
𝑑𝑎𝑡𝑒 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤(𝑉008) − 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ(𝐵3)

12
 

 

The survival time for children who are dead was simply the age at death divided by 12; 

 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑑𝑒𝑎𝑑 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 =
𝐴𝑔𝑒 𝑎𝑡 𝑑𝑒𝑎𝑡ℎ(𝐵7)

12
 

 

• Explanatory variables 

The explanatory variables were grouped into four categories which are social demographic, 

social economic, biological and environmental factors. 

 

The social-demographic factors include Mothers’ age group, Religion and Sex of 

household head (SHH). Religion had the following categories; Catholic, Anglican, 

Muslim, CCAP, other Christian and no religion. Sex of household head had female and 

male categories. The mother’s age group, in years, at birth of the child was calculated as 

the difference between the child's birth date and mothers’ birthdate which was then 

categorized into 15-19, 20-24, 25-29, 30-34, 35-39, 40-44 and 45-49 years. 

 

The social economic factors include mother's highest education and economic status of the 

family. Mother's highest education was categorized into no education, primary, secondary, 
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and higher (tertiary). Economic status of the family had the following categories; poorest, 

poorer, average, richer and richest. The DHS program calculates the composite score 

wealth index which determines the family economic status by combining ownership of 

several household assets (televisions or bicycles), construction materials for the household 

in which participants live, as well as their accessibility to water and sanitation services 

(Gondwe et al., 2021). 

 

The biological factors include sex of child, type of birth and size of child at birth. Type of 

birth was categorized into single and multiple whilst the size of child at birth covariate was 

categorized into very small, smaller than average, average and larger than average. 

 

The environmental factors include source of drinking water, area of residence and place of 

delivery. Area of residence was categorized into rural and urban whilst place of delivery 

had 4 categories which were respondent's home, Other home, Government hospital, 

Government health center, Government health post / outreach, Other public sector, Private 

hospital / clinic, Cham/mission hospital, Cham/mission health center and BLM(Banja la 

Mtsogolo). Globally, nearly a billion people still lack access to improved sources of 

drinking water and unimproved water and sanitation are major causes of diarrhea which 

globally accounts for approximately 1.4 million child deaths each year (Ezeh et al., 2014). 

As such it is important to look at this environmental factor which is source of drinking 

water. For this covariate respondents were asked their main source of drinking water for 

members of their household was asked and the responses were categorized into twelve 

categories which were Piped into dwelling, Piped to yard/plot, Piped to neighbor, Public 

tap/standpipe, Tube well or borehole, Protected well, Unprotected well, Protected spring, 

Unprotected spring, River/dam/lake/ponds/stream/canal, Rainwater and Not a dejure 

resident. 

 

3.2. Methods of Analysis 

Data analysis was conducted in Stata 14 at univariate and multivariable levels. Kaplan-

Meier and log-rank tests were used for the univariate analysis and since the Cox-frailty 
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model is a modification of the Cox proportional hazard model, both models were fitted for 

the multivariable analysis. The significance level was taken as a p value <0.05. 

 

 Let 𝑡 represent the time to death (survival time) of a child under 1year of age (age of the 

child) in the data. Assuming that the survival times or are identically and independently 

distributed, the Cox Proportional Hazard model with covariates was fitted as follows; 

 

𝜆(𝑡|𝑍) = 𝜆0(𝑡)exp (𝛽1 ∗ 𝑚𝑜𝑡ℎ𝑒𝑟𝑠′𝑎𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 + 𝛽2 ∗ 𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑛 + 𝛽3 ∗ 𝑆𝐻𝐻 + 𝛽4

∗ 𝑠𝑖𝑧𝑒 𝑎𝑡 𝑏𝑖𝑟𝑡ℎ + 𝛽5 ∗ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛽6 ∗ 𝑠𝑒𝑥 𝑜𝑓 𝑐ℎ𝑖𝑙𝑑 + 𝛽7

∗ 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ + 𝛽8 ∗ 𝑚𝑜𝑡ℎ𝑒𝑟𝑠′ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽9

∗ 𝑓𝑎𝑚𝑖𝑙𝑦 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝛽10 ∗ 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 + 𝛽11

∗ 𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑓 𝑑𝑟𝑖𝑛𝑘𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟 

 

For the Cox frailty model which is an extension of the Cox proportional hazard model, 

family and community effects on infant mortality will be considered. The Frailty model 

has an unobserved multiplicative effect on the hazard rate for all individuals in the same 

group. This is why this model was used in this study since infants in the same family or 

community share the same nuisance (frailty) factor. Some infant deaths occur more in 

certain families than others and this variation could be due to effects of biological, genetic, 

parental competence, and other family specific factors that have not been accounted for in 

the Cox proportional hazard model (Bolstad & Manda, 2001). And also, some communities 

experience more infant deaths than others which could be due to different cultural practices 

and customs as such it is important to study these random effects in infant mortality. 

 

Let 𝑡𝑖𝑘be the time child k, in family or community i, leaves the study, either by death or by 

surviving to the end of the study. Let 𝑋𝑖𝑘 denote the design vector for child k, in family or 

community i, for the fixed effect explanatory variables and let 𝛽 be the vector of fixed 

effect coefficient. Then the hazard function for child k, in family/community i, will be 

given by; 

ℎ𝑖𝑘(𝑡|𝑥𝑖𝑘, 𝑏𝑖𝑘) =𝑏𝑖𝑘ℎ0(𝑡) exp(𝑥𝑖𝑘
𝑇 𝛽) 
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Where𝑏𝑖 is the random effects which will be interpreted as relative risk since it operates 

multiplicatively on the hazard function (Bolstad & Manda, 2001). 

 

3.2.1 Model Diagnostics 

Since the Cox proportional hazard model is semi-parametric and that it does not have an 

implied error, model checking is commonly implied checking whether the proportional 

hazards assumption is met. Testing the time dependent covariates is equivalent to testing 

for a non-zero slope in a generalized linear regression of the scaled Schoenfeld residuals 

on functions of time.  A non-zero slope is an indication of a violation of the proportional 

hazard assumption. 
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CHAPTER 4 

 

RESULTS 

 

In this chapter, the results of the study have been presented and discussed with reference 

to the aim of the study. 

 

This study aimed to identify factors associated with infant mortality in Malawi and to 

examine the effects of unobserved heterogeneity (frailty) on infant mortality both at family 

and community level. This chapter provides a description of the results that were found 

after analyzing the 2015-16 MDHS data. 

 

4.1 Description of Study Population 

This section gives a brief description of the study population based on the factors that were 

studied. A total number of 4232 infants was considered for this study and out of these, 721 

(17.04%) died before their first birthday. The mean age in months for infants who died is 

2.25 months which indicate that a lot of infants die in their early days afterbirth as presented 

in table 2. As can be seen from tables 3,4 and 5, out of the 721 dead infants, 405 (56.17%) 

were males and 316 (48.83%) were females, which clearly indicates that more male infants 

died than females. On the family economic status infants born from poorest families had 

the highest death percentage of 24.41 and 85.25 percent infant that died were from the rural 

area. The table also showed that the population had more households that are poorer and 

poorest. The table 4 also showed that a lot of households used boreholes as a source of 

drinking water, 2535 households out of the 4232 use boreholes as a source of drinking 

water. A high number of mothers’ education level, 2798, was primary. 
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Table 2: Descriptive Statistics for age in months 

status N Sd(months) IQR(months) Median(months) 

alive 3511 3.64 3 to 9 6.00 

dead 721 3.79 0 to 3 0.00 

total 4232 3.96 2 to 9 5.00 

 

 

Table 3: Distribution of deaths by survival determinants 

COVARIATE Number of deaths Percentage (%) 
Sex of child 

male 

female 

 

405 

316 

 

56.17 

48.83 

Family economic 

status 

Poorest  

Poorer 

Middle 

Richer 

richest 

 

176 

174 

127 

124 

120 

 

 

24.41 

24.13 

17.61 

17.20 

16.64 

 

Place of delivery 

Respondents home 

Other home 

Govt  hospital 

Govt health center 

Govt  outreach 

Other pub sector 

Private hospital 

Cham/mission hospital 

Cham/mission health 

center 

Other 

 

47 

19 

246 

306 

7 

0 

20 

35 

32 

9 

 

6.52 

2.64 

34.12 

42.44 

0.97 

0 

2.77 

4.85 

4.44 

1.25 

Religion  

Catholic 

CCAP 

Anglican 

Seventh day Adventist 

Other Christian 

Muslim 

Other 

 

702 

549 

187 

280 

1919 

573 

4 

 

17.48 

10.12 

2.77 

8.32 

48.27 

12.76 

0.28 
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Table 4: Cont of distribution of deaths by survival determinants 
Sex of household head 

Male 

female 

 

2354 

978 

 

74.48 

25.52 

Source of drinking water 

Piped into dwelling 

Piped to yard 

Piped to neighbor 

Public tap 

Tube well/borehore 

Protected well 

Unprotected well 

Unprotected spring 

River/dam 

Rainwater 

other 

Not a dejure resident 

 

95 

264 

148 

413 

2535 

125 

333 

12 

200 

3 

0 

38 

 

2.91 

5.69 

2.64 

8.04 

62.69 

2.91 

8.46 

1.66 

4.02 

0.28 

0.00 

0.42 

Mothers’ highest education 

No education(ref) 

Primary 

Secondary 

higher 

 

495 

2798 

858 

81 

 

 

12.21 

69.21 

17.48 

1.11 

Mothers’ age group 

15-19 

20-24 

25-29 

30-34 

35-39 

40-44 

45-49 

 

657 

1364 

877 

679 

436 

164 

55 

 

11.37 

30.64 

19.97 

16.64 

12.34 

5.83 

3.19 
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Table 5: Cont of distribution of deaths by survival determinants 
Area of residence 

Urban 

Rural 

 

690 

3542 

 

14.15 

85.85 

 

Size of child 

Very large 

Larger than average 

Average 

Smaller than average 

Very small 

Don’t know 

 

329 

1030 

2108 

523 

184 

58 

 

 

7.77 

20.80 

42.72 

16.78 

7.63 

4.30 

Type of birth 

Single birth 

1st of multiple 

2nd of multiple 

 

609 

54 

58 

 

84.47 

7.49 

8.04 

 

4.2 Life Table Results 

The life table summarized the mortality trend among infants and as can be seen from the 

table 6, there was a high number of deaths in infants between the ages of 0 and 1 month 

old, there were 458 deaths. Which is in agreement with the research that a lot of children 

die in their first month of life (neonatal period). Generally, as the months increase the 

number of deaths decrease which implies that age of child plays a role in infant mortality. 

 

Table 6: summary of survival probabilities for infants 

Interval 

/Months 

Beginning 

total no. of 

children 

deaths lost survival Confidence  

interval 

0        1 4232 458 128 0.8901 (0.8802, 0.8992) 

1        2 3646 50 274 0.8774 (0.8671, 0.8871) 

2        3 3322 21 299 0.8716 (0.8610,  0.8815) 

3        4 3002 17 277 0.8664 (0.8556, 0.8765) 

4        5 2708 16 273 0.8611 (0.8500, 0.8714) 

5        6 2419 14 315 0.8557 (0.8443, 0.8664) 

6        7 2090 23 275 0.8456 (0.8336, 0.8569) 

7        8 1792 13 270 0.8390 (0.8265, 0.8507) 

8        9 1509 21 256 0.8263 (0.8127, 0.8389) 

9       10 1232 27 279 0.8058 (0.7905, 0.8202) 

10     11 926 9 258 0.7967 (0.7804,0.8120) 

11      12 659 12 297 0.7780 (0.7587, 0.7960) 

12      13 350 40 310 0.6184  (0.5700, 0.6630) 
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4.3 Kaplan Meier Results 

In this section the research used a non-parametric method, the Kaplan Meier, which is 

mainly graphical, to describe how the risk of death for the children under 1 year is 

distributed across the strata of some of the chosen covariates. 

 

Only a few Kaplan Meier curves are presented in the thesis and the others are presented in 

appendix B. As can be seen in figures 2, 3 and 4, the curve shows that male infants had a 

high probability of death compared to female infants. Infants born in poorer families had a 

high probability of death compared to their counterparts and infants born in families headed 

by males had a higher probability of survival than infants born in families headed by 

females. 

 

 

Figure 2: Survival estimates by sex of child 
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Figure 3: Survival estimates by sex of household head 

 

 

Figure 4: Survival estimates by family economic status 
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4.4 Log Rank Test Results 

The log rank test is a popular test used to test the null hypothesis of no difference in survival 

between two or more independent groups. In this study, the test was used to compare the 

survival experience between/among groups of the variables at 5% significance level. 

 

The results showed that size of child at birth was found to have a significant association 

with infant mortality with P-value = 0.003and chi2=18.20. The other covariates SHH, type 

of birth, area of residence and mothers’ age group were also found to have a statistical 

significant association with infant mortality with P-value=0.014 and chi2=6.01, P-

value<0.001 and chi2=21.68,P-value=0.002 and chi2=9.25 and P-value<0.001 and chi2= 

47.00 respectively. The rest of the covariates were found to have no significant influence 

on infant mortality since the P-values were greater than 0.05 which implied that there was 

no statistically significant evidence that the survival distributions were not the same. Table 

7 gives a summary of the log rank test results. 

 

Table 7: Log Rank Test Results 

COVARIATE Chi2 P-VALUE 

Sex of child 1.17 0.279 

Family Economic Status 5.12 0.275 

Size of child 18.20 0.003 

Religion 10.98 0.140 

Type of birth 21.68 <0.001 

Source of drinking water 10.55 0.568 

Mothers’ Age group 47.00 <0.001 

Mothers’ highest education 7.07 0.069 

Place of delivery 16.39 0.059 

Sex of household head 6.05 0.014 

Area of residence 9.25 0.002 
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4.5. Cox Proportional Hazard Model 

The Cox hazard model tests the hypothesis that hazard ratio is equal to 1 (HR=1), meaning 

that there is no difference in the relative risk of death between the group of interest and the 

reference group.If the hazard ratio is > 1, this indicates that the treatment group has a 

shorter survival than the control referenced group, and if it is < 1, it indicates that the group 

of interest is less likely to have a shorter time to the event than the reference group. 

 

The results for the Cox proportional hazard analysis are presented in tables 8, 9 and 10. 

The findings of the study showed that the overall model was highly significant with a p-

value of 0.000, indicating that at least one of the covariates exerts effects on infant mortality 

in Malawi. 

 

According to the results, infants who were the second multiple babies to be born and first 

multiple babies had a higher risk of dying before reaching the age of one than children who 

were born single. This covariate, type of birth, was highly significant with p-values (95% 

CI) of <0.001(1.639, 5.700) and 0.049 (1.004, 4.326) for 2nd and 1st multiple babies 

subcategories respectively. It was also found that sex of household head was significant in 

infant mortality. The results indicated that children born in households whose head was a 

female had a higher risk of dying before reaching the age of 1 year than children born in 

households with a male head, P-value=0.026, HR=1.37 and 95%CI= (1.037, 1.803). 

 

For place of delivery covariate, private hospital subcategory was significant with P-

value=0.020 and hazard ratio HR= 2.97 (95%CI=1.175, 7.524). This indicated that children 

who are born in private hospitals had a higher risk of dying 2.97 times more than children 

born in respondent’s home before reaching the age of 1 year, whereas the hazard ratios for 

other groups were not statistically significant. 

 

It was also found that infants born from families whose religion is other had a higher risk 

of dying compared to infants born from catholic families with P-value=0.024, HR=10.95 

and 95%CI =(1.374,  87.240), whereas the hazard ratios for other groups were not 

statistically significant. 
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As can be observed from the results, two groups were highly significant from the covariate 

mothers’ age group with p-values of <0.001. Age group 40-44 and 45-49 had hazard ratios 

of 3.86, 95%CI = (2.148, 6.930) and 5.22, 95%CI= (2.630, 10.337) respectively, which 

indicated that infants whose mother’s age group was 40-44 and 45-49 had a higher risk of 

death compared to infants whose mother’s age group was 15-20. It was also found that the 

confidence interval for the 45-49 age category was wide, this could be because the sample 

size used for the analysis was small.  

 

As can be observed from the results table, five groups from type of drinking water covariate 

were significant. It was found that infants born in families whose source of drinking water 

was piped to neighbor, tube well/bore hole, protected well, unprotected well and river/dam 

had a lower risk of death compared to infants born in families whose source of drinking 

water was piped into dwelling.  

 

Sex of child, size of child, mother’s education, family economic status and area of 

residence were not statistically significant. The coefficient for female group was positive 

which indicated that females had a higher hazard rate and shorter survival time. For the 

economic status and area of residence, all groups had positive coefficients which indicated 

that the variables of interest had higher hazard rates and shorter survival time compared to 

the reference variables. The size of child covariate groups had both negative and positive 

coefficients. Larger than average and average infants had negative coefficients which 

indicated that they had lower risk of dying and had longer survival time. Whilst smaller 

than average and very small infants had positive coefficients which indicated that they had 

higher hazard rates. For mother’s education, secondary and higher groups had negative 

coefficients which indicated that infants born from mothers of the two groups had a lower 

risk of death whilst infants born from primary school mothers had a higher risk of death. 
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Table 8: COX PH MODEL RESULTS 

Covariate Coefficient Hazard ratio (95% 

conf. Interval) 

Std Error P-value 

Sex of child 

male(ref) 

female 

 

 

0.120 

 

1.000 

1.13(0.881    1.443) 

 

 

1.14 

 

 

0.339 

Family economic 

status 

Poorest (ref) 

Poorer 

Middle 

Richer 

richest 

 

 

0.091 

0.196 

-0.115 

-0.085 

 

1.000 

1.13(0.764,  1.569) 

1.20(0.839,   1.764) 

0.89(0.585,  1.357) 

0.90(0.534 ,  1.579) 

 

 

0.21 

0.23 

0.19 

0.25 

 

 

 

0.620 

0.301 

0.593 

0.759 

Place of delivery 

Respondents 

home(ref) 

Other home 

Govt  hospital 

Govt health center 

Govt  outreach 

Private hospital 

Cham/mission 

hospital 

Cham/mission health 

center 

Other 

 

 

0.459 

0.214 

0.364 

0.660 

1.089 

-0.087 

0.702 

0.036 

 

1.000 

1.41(0.521 ,   4.809) 

1.11(0.604 ,  2.537) 

1.32(0.722 ,  2.871) 

1.71(0.584,    6.415) 

2.90(1.175 ,  7.524) 

0.81(0.377 ,   2.227) 

1.76(0.874 ,   4.653) 

1.03(0. .276 , 3.887) 

 

 

0.79 

0.40 

0.46 

1.04 

1.36 

0.36 

0.74 

0.69 

 

 

0.417 

0.560 

0.301 

0.280 

0.021 

0.847 

0.100 

0.958 
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Table 9:CONT OF COX PH MODEL RESULTS 
Religion  

Catholic(ref) 

CCAP 

Anglican 

Seventh day 

Adventist 

Other Christian 

Muslim 

Other 

 

 

-0.181 

-0.558 

-0.009 

-0.024 

-0.173 

2.393 

 

1.000 

0.85(0. 519 ,  1.343) 

0.59(0.251 ,  1.300) 

1.01(0. .558  ,  1.757) 

0.99(0. 689 ,  1.384) 

0.85(0 .533 ,   1.327) 

10.22(1.374  ,87.240) 

 

 

0.21 

0.25 

0.29 

0.18 

0.20 

10.84 

 

 

0.457 

0.183 

0.974 

0.895 

0.457 

0.024 

 

Type of birth 

Single(ref) 

1st of Multiple 

2nd of multiple 

 

 

 

0.734 

1.117 

 

1.00 

2.27(1.004 ,   4.326) 

3.26(1.639 ,    5.700) 

 

 

0.84 

1.03 

 

 

0.049 

<0.001 

Source of drinking 

water 

Piped into dwelling 

Piped to yard 

Piped to neighbor 

Public tap 

Tube well/borehore 

Protected well 

Unprotected well 

Unprotected spring 

River/dam 

Not a dejure 

resident 

 

 

-0.332 

-1.654 

-0.949 

-1.058 

-1.426 

-1.061 

-0.971 

-1.303 

-1.738 

 

 

1.00 

0.64(0.281 ,    1.829) 

0.17(0.046 ,    0.795) 

0.33(0 .145 ,   1.029) 

0.30(0.135  ,   0.892) 

0.22(0.067 ,   0.856) 

0.29(0.124  ,  0.964) 

0.35(0.111  ,   1.297) 

0.23(0.088  ,  0.829) 

0.16(0.019  ,  1.620) 

 

 

0.30 

0.12 

0.16 

0.14 

0.14 

0.15 

0.22 

0.13 

0.18 

 

 

0.487 

0.023 

0.057 

0.028 

0.028 

0.042 

0.122 

0.022 

0.125 

 

Mothers’ highest 

education 

No education(ref) 

Primary 

Secondary 

higher 

 

 

0.157 

-0.057 

-1.589 

 

1.00 

1.17(0.790 ,   1.729) 

0.93(0 .559 , 1.594) 

1.85(0.025 ,  1.604) 

 

 

0.23 

0.25 

0.20 

 

 

0.443 

0.830 

0.131 
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Table 10 :CONT OF COX PH MODEL RESULTS 
Sex of household head 

Male(ref) 

Female 

 

 

0.313 

 

1.00 

1.37(1.037  ,  1.803) 

 

 

0.19 

 

 

0.026 

Mothers’ age group 

15-19(ref) 

20-24 

25-29 

30-34 

35-39 

40-44 

45-49 

 

 

0.349 

0.307 

0.300 

0.427 

1.350 

1.652 

 

1.00 

1.36(0.910 ,  2.204) 

1.31(0.842  ,  2.193) 

1.31(0 .822  , 2.217) 

1.40(0 .900 ,   2.611) 

3.49( 2.148 ,   6.930) 

4.63(2.630 ,  10.337) 

 

 

0.31 

0.32 

0.33 

0.38 

1.04 

1.60 

 

 

0.122 

0.209 

0.235 

0.116 

<0.001 

<0.001 

Area of residence 

Urban(ref) 

Rural 

 

 

0.455 

 

1.00 

1.60(0.923  , 2.686) 

 

 

0.43 

 

 

0.095 

Size of child 

Very large(ref) 

Larger than average 

Average 

Smaller than average 

Very small 

Don’t know 

 

 

 

 

-0.115 

-0.030 

0.532 

0.009 

0.900 

 

1.00 

0.89(0.527  ,  1.504) 

0.97(0.594  ,  1.582) 

1.70(0.985  ,  2.941) 

1.01(0.497  , 2.049) 

2.46(0.815  ,  7.413) 

 

 

 

0.24 

0.24 

0.48 

0.37 

1.39 

 

 

0.667 

0.904 

0.056 

0.979 

0.110 

 

4.6 Multivariable Model Development 

Likelihood ratio tests were used for the multivariable model development. The covariates 

which were significant in the Cox proportional hazard model are the ones which were 

included in the final model. Firstly, type of birth was adjusted in the final model by fitting 

a Cox proportional hazard model with just one variable and then fitting another model with 

the five variables from the final model to perform a likelihood ratio test. After adjustment 

for type of birth, the null hypothesis, the smaller model provides as good a fit for the data 

as the larger model, was rejected since the P-value was 0.0002 which was less than 0.05 

and this indicated that including type of birth creates a statistically significant improvement 

in the fit of the final model. Two factors were then adjusted, type of birth and place of 

delivery. 
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After adjustment for type of birth and place of delivery, the P-value=0.0005 was also less 

than 0.05 as such the null hypothesis was rejected and conclude that the two covariates 

create a statistically significant improvement in the fit of the final model. However, after 

adjusting for type of birth, place of delivery and mothers’ age group the P-value=0.436 was 

greater than 0.05 as such we failed to reject the null hypothesis and conclude that mothers’ 

age group does not create an improvement to the fit of the model.  

 

Finally, type of birth, place of delivery, sex of household head and source of drinking water 

covariates were adjusted for and the P-value was less than 0.001 as such we rejected the 

null hypothesis which indicated that the covariates create an improvement to the fit of the 

final model. The models were compared by displaying betas and summary statistics for 

each model which are presented in table 11. The BIC is Schwarz’ Bayesian Information 

Criterion, which is a function of the log-likelihood. Smaller values indicate a better fit and 

as can be seen from table 4.6 model 2, with covariates type of birth and place of delivery 

had the lowest BIC value. 

 

 4.6.1 Model Diagnostics 

The Schoenfeld residuals goodness of fit test was used to check the Cox proportional 

hazard model fitted in section 4.4. The null hypothesis for this test was that there are no 

violations of the proportional hazards assumption among the variables in the model. The 

results in table 12 for the global p-value for the test was found to be 0.571 and all the 

covariates had p-values greater than 0.05, as such the study failed to reject the null 

hypothesis. The results indicated that all the explanatory variables are constant over time 

since they are not statistically significant, hence they were no violations of the proportional 

hazards assumption. 

 

Graphs of the scaled Schoenfeld residuals were then obtained for each covariate to test 

proportionality of each predictor. As discussed in chapter 3, a non-zero slope indicates a 

violation of the proportional hazard assumption. As can be seen from figures 5, 6, and 7, 

there was a zero slope on the graphs as such we concluded that there was no violation of 
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the proportional hazards assumption for religion, size of child and type of birth predictors 

respectively. The scaled Schoenfeld residuals plots for the other variables presented in 

appendix B also had a zero slope which indicated that they did not violate the proportional 

hazards assumption.  

 

Table 11:Test of proportional-hazards assumption 

 

Covariate rho Chi2 df p-value 

Sex of child 0.040 0.43 1 0.512 

Family economic 

status 

0.097 2.39 1 0.122 

Place of delivery 0.007 0.01 1 0.915 

religion 0.008 0.02 1 0.896 

Mother’s 

education 

-0.115 2.97 1 0.085 

Type of birth 0.047 0.58 1 0.447 

Source of drinking 

water 

-0.018 0.07 1 0.785 

Sex of household 

head 

-0.029 0.22 1 0.641 

Mother’s age 

group 

0.033 0.33  0.567 

Area of residence 0.096 2.34 1 0.126 

Size of child at 

birth 

-0.043 0.52 1 0.473 

Global test  9.55 11 0.571 
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Table 12: Coefficients (Log Of Hazard Ratios) And Summary Statistics 

  

 Model 2 

       b 

 Model 3 

       b 

Model 4 

      b 

 Model 5 

       b 

 Final model 

        b 

Type of birth 

single 0 0                       0 0 0 

1st of multiple 0 .845  0.894  0.778  0.782  0.835 

2nd of multiple  1.215  1.303  1.168  1.160  1.255 

Place of delivery 

Respondents home  0 0  0  0  0  

Other home  0.410  0.281 0 .430  0.469 0 .303 

Govt hospital  -0.1284  -0.035  -0.118  -0.088  -0.009 

Govt health center  0.168  0.239  0.170  0.209  0.272 

Govt outreach 0.328  0.475 0 .416  0.476  0.609 

Other pub sector  -40.026  -39.781  -36.073  -34.959  -33.729 

Private hospital  0.909  1.015  0.864  0.898  1.015 

Cham/mission hospital  -0.316  -0.264  -0.279  -0.248  -0.214 

Cham/mission health 

center 0.413  0.521 0 .435  0.489 0 .573 

other  -0.166  -0.079  -0.134  -0.065  -0.0015 

Mothers’ age group15-

19   0      0 

20-24   0.281     0.287 

25-29  0 .215      0.208 

30-34  0.239   0.231 

35-39  0.322   0.295 

40-44  1.270   1.234 

45-49  1.597   1.523 

Source of drinking 

water 

Piped into dwelling      0  0  0 

Piped to yard      -0.011  -0.018  -0.06 

Piped to neighbor      -1.253  -1.268  -1.255 

Public tap      -0.264  -0.282  -0.34 

Tubewell/bore hole      -0.16  -0.192  -0.273 

Protected well      -0.640  -0.651  -0.654 

Unprotected well      -0.102  -0.145  -0.243 

Unprotected spring      -36.419  -35.491  -34.628 

River/dam     0 .049  -0.036  -0.041 

rainwater     -0.424   -0.430  -0.537 

Cart with small tank      -36.237  -35.152  -35.237 

other      -36.239  -35.507  -34.627 

Not a dejure resident      -0.757  -0.800  -0.751 

Sex of household head 

female        0  0 

male        0.333  0.282 

Chi2 29.11681** 63.08413*** 39.94171* 45.66825** 76.89593*** 

BIC 3942.396 3957.637 4038.19 4040.664 4058.645 
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Figure 5: Religion Schoenfeld residuals plot 

 

Figure 6: Size of child Schoenfeld residuals plot 
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Figure 7: Type of birth Schoenfeld residuals plot 

 

4.7. Cox Frailty Model 

Two models were fitted in this section one was the Cox frailty model with community 

effects as the frailty term and a Cox frailty model with household effects as the frailty 

term.296 households and 845 communities (clusters) were considered in this study.  

Results for the household effects Cox frailty model are presented in tables 13, 14 and 15. 

By using the likelihood ratio test with a null hypothesis that the variance of the frailty term 

is zero (𝜃 = 0), the chi-square test statistic (𝜒 = 2.90) with a p-value of 0.04 at 0.05 level 

of significance, there was enough evidence to show the existence of unobserved 

heterogeneity at household level which suggests that some households were associated to 

a higher risk of children dying before reaching the age of one year than others. However, 

for the community effects, the model did not converge. 

 

The factors that were strongly associated with infant mortality after controlling for 

household effects were identified by looking at the p-values and the 95% confidence 

intervals. The factors whose p-values were greater than 0.05 level of significance and 

95%CI spanned a 1 implied that the factors were not significant and those with p-

value<0.05 and 95%CI did not span a 1 implied significance. The children born in 

households headed by women were at a high risk of death before reaching the age of one 
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year than those born in households where the man is the head, (P-value=0.027, HR=1.37, 

95%CI =1.036, 1.803). The other factors which were found to be associated with infant 

mortality after controlling for household effects included place of delivery, religion, type 

of birth, source of drinking water, mothers’ age group and size of child at birth. 

 

Table 13: Cox Frailty Model Results 
Family /household effects 

covariate Hazard ratio (95% confidence 

interval) 

Std Error P-value 

Sex of child 

male(ref) 

female 

 

 

1.16(0.906,  1.486) 

 

 

0.14 

 

 

0.238 

Family economic status 

Poorest (ref) 

Poorer 

Middle 

Richer 

richest 

 

 

1.000 

1.14(0.792,   1.636) 

1.20(0.824,   1.752) 

0.88(0.577,  1.352) 

0.89(0.516, 1.547) 

 

 

 

0.21 

0.23 

0.19 

0.25 

 

 

 

0.483 

0.339 

0.569 

0.689 

Place of delivery 

Respondents home(ref) 

Other home 

Govt  hospital 

Govt health center 

Govt  outreach 

Private hospital 

Cham/mission hospital 

Cham/mission health center 

other 

 

1.000 

1.52(0.494,  4.670) 

1.12(0.543,    2.305) 

1.35(0.067,  2.725) 

1.76(0.524,  5.936) 

3.12(1.225,   7.954) 

0.81(0.330,   1.980) 

1.81(0.077,  4.201) 

1.00(0.265,   3.796) 

 

 

0.87 

0.41 

0.48 

1.09 

1.49 

0.37 

0.78 

0.68 

 

 

0.466 

0.760 

0.390 

0.359 

0.017 

0.643 

0.168 

0.996 
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Table 14: Cont Of Cox Frailty Model Results 

Religion  

Catholic(ref) 

CCAP 

Anglican 

Seventh day Adventist 

Other Christian 

Muslim 

other 

 

 

0.85(0.526,   1.373) 

0.58(0.253,   1.323) 

1.00(0.559,   1.768) 

0.98(0.686,   1.389) 

0.84(0.529,  1.327) 

1.00(1.192,   83.778) 

 

 

0.21 

0.24 

0.29 

0.18 

0.20 

10.84 

 

 

 

0.508 

0.195 

0.985 

0.894 

0.452 

0.034 

Type of birth 

Single(ref) 

1st of Multiple 

2nd of multiple 

 

 

 

2.13(1.121,  4.844) 

3.14(1.765,    6.238) 

 

 

0.81 

1.02 

 

 

0.023 

<0.001 

Source of drinking water 

Piped into dwelling(ref) 

Piped to yard 

Piped to neighbor 

Public tap 

Tube well/borehore 

Protected well 

Unprotected well 

Unprotected spring 

River/dam 

Not a dejure resident 

 

1.00 

0.63(0.247,   1.618) 

0.16(0.038 ,  0.675) 

0.31(0.116,  0.831) 

0.28(0.107,  0.718) 

0.20(0. 0547,   0.701) 

0.27(0.097,   0.770) 

0.33(0.094,   1.156) 

0.21(0.0699,   0.669) 

0.16(0.016,  1.453) 

 

 

0.30 

0.12 

0.16 

0.13 

0.13 

0.15 

0.21 

0.13 

0.18 

 

 

0.430 

0.013 

0.020 

0.008 

0.012 

0.014 

0.111 

0.008 

0.103 

Mothers’ highest 

education 

No education(ref) 

Primary 

Secondary 

higher 

 

1.00 

1.18(0. 787,  1.730) 

0.93(0. 545,   1.563) 

0.20(0 .022,  1.452) 

 

 

 

0.24 

0.25 

0.21 

 

 

0.442 

0.766 

0.108 
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Table 15: Cont Of Cox Frailty Model Results 

 

Sex of household head 

Male(ref) 

female 

 

1.00 

1.37(1.033,   1.807) 

 

 

0.19 

 

 

0.028 

Mothers’ age group 

15-19(ref) 

20-24 

25-29 

30-34 

35-39 

40-44 

45-49 

 

1.00 

1.39(0 .852,   2.074) 

1.37(0. 808,   2.116) 

1.34(0.782,    2.121) 

1.55(0.821,    2.383) 

3.80( 1.868,   6.075) 

5.21(2.279,  9.171) 

 

 

0.32 

0.34 

0.33 

0.43 

1.16 

1.87 

 

 

0.209 

0.274 

0.320 

0.216 

<0.001 

<0.001 

Area of residence 

Urban(ref) 

rural 

 

1.00 

1.60(0. 981,    2.904) 

 

 

0.44 

 

 

0.058 

Size of child 

Very large(ref) 

Larger than average 

Average 

Smaller than average 

Very small 

Don’t know 

 

 

 

1.00 

0.88(0. 517,   1.493) 

0.98(0.593,   1.598) 

1.78(1.00,    3.048) 

1.01(0.484,   2.044) 

2.27(0.745,   7.038) 

 

 

 

0.209 

0.24 

0.50 

0.37 

1.30 

 

 

0.633 

0.918 

0.046 

0.991 

0.148 

Frailty Variance 0.17 0.12  

 

4.8 Parametric Frailty Models 

Parametric frailty models were fit to select the best fit model. Two parametric frailty 

models werefit for both the household and community effects using two different 

distributions making a total of four models. The first parametric frailty models to be fitted 

were the Weibull distribution model to assess if there exists unobserved heterogeneity at 

household and community level. The results are presented in tables 16, 17 and 18. The 
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other models were fit using the log normal distribution and the results are presented in 

appendix C. For the Weibull/gamma models, the results indicated that there were no 

unobserved heterogeneity at household level with P-value=0.056 and 𝜃=2.54 and no 

unobserved heterogeneity at community level with P-value=1.000 and 𝜃=0.00. Whilst for 

the log normal distribution models, it was found that there were no unobserved 

heterogeneity at household level with P-value=0.090 and 𝜃 = 1.80 and also that there were 

no unobserved heterogeneity at community level with P-value=0.499 and 𝜃 = 2.6e-06. 
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Table 16: Parametric Frailty Models 
 Household effects (weibull) Community effects (weibull) 

COVARIATE Hazard 

ratio(95% 

confidence 

interval) 

SE P-value Hazard ratio(95% 

confidence interval)  

SE P-value 

Sex of child 

male(ref) 

female 

 

1.000 

1.14(0.891 ,  

1.467) 

 

 

0.146 

 

 

0.292 

 

 

1.139(0.891 ,  1.469) 

 

 

0.1143 

 

 

0.300 

Family economic 

status 

Poorest (ref) 

Poorer 

Middle 

Richer 

richest 

 

 

 

1.096(0.762, 

1.575) 

1.202(0.824,  

1.754) 

0.861(0.563,  

1.319) 

0.904(0.523,  

1.561) 

 

 

 

0.203 

0.232 

0.187 

0.252 

 

 

 

0.622 

0.339 

0.492 

0.717 

 

 

 

1.091(0.762 ,1.563) 

1.210(0.835,1.755) 

0.868(0.579,1.322) 

0.916(0.534,  1.568) 

 

 

 

0.200 

0.229 

0.186 

0.251 

 

 

 

0.632 

0.313 

0.511 

0.750 

Place of delivery 

Respondents 

home(ref) 

Other home 

Govt  hospital 

Govt health center 

Govt  outreach 

Private hospital 

Cham/mission hospital 

Cham/mission 

healthcenter 

other 

 

 

1.000 

1.662(0.536,  

5.153) 

1.182(0.573,   

2.439) 

1.434(0.713,   

2.884) 

1.921(0.571,   

6.470) 

3.475(1.358 ,  

8.894) 

0.859(0.351, 

2.102) 

 

1.992(0.855,  

4.643) 

 

0.988(0.258,  

3.737) 

 

 

 

0.959 

0.436 

0.511 

1.190 

1.666 

0.392 

 

0.860 

 

0.669 

 

 

 

0.397 

0.651 

0.312 

0.292 

0.009 

0.739 

 

0.110 

 

0.979 

 

 

 

1.543(0.509,   4.676) 

1.174(0.575,   2.398) 

1.405(0.706,  2.795) 

1.865(0.565,  6.166) 

3.229(1.288,   8.098) 

0.865(0.35,   2.096) 

 

1.139(0.843,   4.462) 

 

0.955(0.265,   3.732) 

 

 

 

0.91 

0.46 

0.51 

1.21 

1.43 

0.42 

 

0.87 

 

0.70 

 

 

 

0.442 

0.659 

0.332 

0.307 

0.012 

0.749 

 

0.119 

 

0.995 
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Table 17: CONT OF PARAMETRIC FRAILTY MODELS 

 

 

 

 

 

 

 

Religion  

Catholic(ref) 

CCAP 

Anglican 

Seventh day 

Adventist 

Other Christian 

Muslim 

other 

 

1.000 

0.854(0.528,   1.382) 

0.572(0.249,   1.312) 

1.037(0.582,   1.851) 

0.979(0.688,   1.394) 

0.851(0.536,   1.353) 

11.671(1.362,   99.929) 

 

 

0.209 

0.242 

0.306 

0.177 

0.201 

12.784 

 

 

 

0.521 

0.187 

0.900 

0.907 

0.496 

0.025 

 

 

0.854(0.531,   1.376) 

0.591(0.260,  1.341) 

1.051(0.594 ,   1.863) 

0.986(0.696,  1.398) 

0.871(0.552,  1.375) 

11.238(1.410,  89.554) 

 

 

0.208 

0.247 

0.306 

0.175 

0.202 

11.901 

 

 

0.518 

0.209 

0.862 

0.939 

0.554 

0.022 

Type of birth 

Single(ref) 

1st of Multiple 

2nd of multiple 

 

1.000 

2.126(1.017,   4.443) 

2.957(1.564,   5.591) 

 

 

0.799 

0.960 

 

 

0.045 

<0.001 

 

 

2.071(1.003,  4.278) 

2.881(1.545,  5.374) 

 

 

0.766 

0.916 

 

 

0.049 

0.001 

Source of drinking 

water 

Piped into 

dwelling(ref) 

Piped to yard 

Piped to neighbor 

Public tap 

Tube well/borehore 

Protected well 

Unprotected well 

Unprotected spring 

River/dam 

Not a dejure resident 

 

 

1.00 

0.671(0.261,    1.724) 

0.177(0.042 ,  0.743) 

0.354(0.132,   0.952) 

0.315(0.121,  0.821) 

0.206(0.057,   0.746) 

0.291(0.103,  0.826) 

0.350(0.100,    1.226) 

0.248(0.080,   0.773) 

0.160(0.017,    1.496) 

 

 

 

0.323 

0.129 

0.178 

0.154 

0.135 

0.155 

0.223 

0.144 

0.183 

 

 

 

0.407 

0.018 

0.040 

0.018 

0.016 

0.020 

0.101 

0.016 

0.108 

 

 

 

0.670(0.265,   1.695) 

0.186(0.045,  0.770) 

0.381(0.145,   1.001) 

0.339(0.133,   0.864) 

0.227(0.064,   0.808) 

0.314(0.113,  0.869) 

0.372(0.109 ,  1.26) 

0.270(0.089,  0.819) 

0.166(0.018,  1.518) 

 

 

 

0.317 

0.134 

0.187 

0.161 

0.147 

0.163 

0.232 

0.153 

0.187 

 

 

 

0.399 

0.020 

0.050 

0.023 

0.022 

0.026 

0.114 

0.021 

0.112 

Mothers’ highest 

education 

No education(ref) 

Primary 

Secondary 

higher 

 

 

1.00 

1.133(0.764,   1.681) 

0.897(0.529,   1.524) 

0.169(0.021 , 1.349) 

 

 

 

0.227 

0.242 

0.179 

 

 

 

0.535 

0.690 

0.094 

 

 

 

1.132(0.766,   1.673) 

0.910(0.535,   1.537) 

0.175(0.022,   1.379) 

 

 

 

0.225 

0.243 

0.184 

 

 

 

0.532 

0.727 

0.098 
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Table 18: CONT OF PARAMETRIC FRAILTY MODELS 
Sex of household 

head 

Male(ref) 

female 

 

 

1.00 

1.37(1.028,  

1.801) 

 

 

 

0.194 

 

 

 

0.032 

 

 

 

1.366(1.035,   1.802) 

 

 

 

0.193 

 

 

 

0.027 

Mothers’ age group 

15-19(ref) 

20-24 

25-29 

30-34 

35-39 

40-44 

45-49 

 

1.00 

1.431(0.917,  

2.232) 

1.375(0.849,  

2.227) 

1.336(0.809,   

2.204) 

1.607(0.943,   

2.746) 

3.692(2.034,   

6.703) 

5.538(2.699,  

10.955) 

 

 

0.324 

0.338 

0.341 

0.438 

1.123 

1.943 

 

 

0.114 

0.196 

0.257 

0.081 

<0.001 

<0.001 

 

 

1.457(0.938,  2.264) 

1.378(0.854,  2.223) 

1.348(0.821,  2.214) 

1.602(0.942,  2.723) 

3.798(2.114,  6.825) 

5.415(2.736,  10.719) 

 

 

0.327 

0.336 

0.341 

0.411 

1.135 

1.886 

 

 

0.094 

0.189 

0.237 

0.082 

<0.001 

<0.001 

Area of residence 

Urban(ref) 

rural 

 

1.00 

1.525(0.887,   

2.623) 

 

 

0.421 

 

 

0.127 

 

 

1.499(0.878,   2.558) 

 

 

0.408 

 

 

0.137 

Size of child 

Very large(ref) 

Larger than average 

Average 

Smaller than average 

Very small 

Don’t know 

 

 

 

1.00 

0.916(0.540,  

1.555) 

 

1.00(0.610,   

1.640) 

1.799(1.036,  

3.126) 

 

1.096(0.537,   

2.239) 

2.177(0.709,  

6.679) 

 

 

 

0.24 

 

0.24 

0.50 

 

0.37 

1.30 

 

 

0.747 

 

0.998 

0.037 

 

0.801 

0.174 

 

 

0.929(50.51,   1.567) 

 

1.001(0.614,    1.632) 

1.748(1.013,   3.016) 

 

1.123(0.555,  2.270) 

2.369(0.789, 7.116) 

 

 

0.24 

 

0.24 

0.48 

 

0.37 

1.38 

 

 

0.783 

 

0.997 

0.045 

 

0.746 

0.124 

constant 0.003(0.000,  

0.011) 

0.002 <0.001 0.002(0.000,  0 .010) 0.001 <0.001 

ln(p) 

ln(theta) 

0.459(0.357,   

0.562) 

-1.836(-

3.228,  -

0.445) 

0.052 

0.709 

<0.001 

0.010 

0.452(0.3498,  0.555) 

-15.430(-1261.713,  

1230.852) 

0.520 

635.780 

<0.001 

0.981 

p 

1/p 

theta 

1.154(1.429,  

1.755) 

0.631(0.569,    

0.699) 

0.159(.0039,  

0.640) 

0.833 

0.033 

0.113 

 

 

0.056 

1.572(1.419, 1.743) 

0.635(0.573,  0.704) 

5.32e-07 

0.827 

0.334 

0.000 

 

 

1.000 
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4.9 Best Fitting Model Selection 

The best fit model was selected using Akakian Information Criteria (AIC) and the Log-

likelihood ratio test. The lowest Akakian Information Criteria and the highest Log-

likelihood ratio value indicates the best fit model. For both the household and community 

effects models, the Weibull-gamma frailty models were found to be the best fit models 

since they had the lowest AIC values as shown in table 19. 

 

Table 19: Model comparison with different distributional assumptions 
Model Baseline 

Hazard 

distribution 

Frailty 

distributi

on 

Frailty variance 

(p-value) 

AIC BIC LRR 

Cox model-

household 

effects 

N/A gamma 0.174 (0.043) 3873.20 4189.47 -1885.60 

Cox model-

community 

effects 

N/A gamma Did not converge 

Shared 

frailty-

household 

effects 

Weibull gamma 0.159 (0.056) 2027.597 2362.472 -959.7985 

Shared 

frailty-

community 

effects 

Weibull gamma 5.32e-07 (1.000) 2030.136 2363.001 -961.068 

Shared 

frailty-

household 

effects 

Log normal gamma 0.130 (0.90) 2061.138 2396.012 -976.569 

Shared 

frailty-

community 

effects 

Log normal gamma 2.11e-07 (1.000) 2062.941 2397.470 -977.470 
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CHAPTER 5  

 

DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

 

The first section of this chapter provides a discussion of the results presented in the 

previous chapter, the conclusion is provided in the second section and finally 

recommendations in the last section. 

 

5.1 Discussion 

This study used survival analysis and frailty modelling to examine the factors that are 

associated with infant mortality in Malawi. The descriptive statistics for age of child in 

months indicate that the mean for infants who died is 2.25 months which is in agreement 

with what was reported by (UNICEF DATA, 2020) that a child’s survival is most 

vulnerable within the first 28 days of life. 

 

Two groups of mother’s age at child birth were found to have a significant association with 

infant mortality in both the log rank test and Cox proportional hazard model. The results 

showed that children born from mothers aged 40-44 and 45-49 years had a higher chance 

of dying before reaching the age of 1 year compared to children born from mothers aged 

15-19 years. This then indicated that women who have children at older age, 40-49 years, 

had significantly increased risk of infant mortality in comparison to the women who had 

their child at younger ages, less than 18 years. It is expected that children born to young 

mothers (aged less than 20 years) and those born to older mothers (aged 40-49 years) 

should have higher mortality than those born to mothers aged 20-39 years (Kembo, 2009) 

which  is similar to what has been found in this study. Young mothers are said to be at 

higher risk of experiencing infant mortality due  to their emotional and psychological 
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immaturity (Dube, 2012) and also because young girls/adolescents delay reacting to 

pregnancies might lack knowledge of the correct health-seeking methods with regard to 

their pregnancies (Phipps et al., 2002). The results from this study however, are in 

contradiction with what  Lemani (Lemani, 2013) found when covariates of infant mortality 

in Malawi were modelled where it was observed that Children born to mothers aged less 

than 20 years had an increased risk of death compared to those born when their mothers 

were aged above 20 (Lemani, 2013) and (Dube, 2012) found that women who had children 

at a young age had significantly increased chances of infant mortality (59%) in comparison 

to the women who had their children at older ages. This contradiction could be because 

pregnancy after 40 years of age has a risk of complications such as high blood pressure, 

preeclampsia, gestational diabetes and birth abnormalities(Kay & Villines, 2020). This is 

why pregnancy after 40 years of age requires quality prenatal care, healthy lifestyle 

maintenance and health center delivery which are things that some women in rural 

Malawian residence don’t have access to and this might lead to high infant mortality rates 

among older women in Malawi. 

 

An interesting finding of this study is that mothers’ highest education had no significant 

association with infant mortality which contradicts the studies of (Omariba et al., 2007), 

which found that mothers with secondary education had a 20% lower chance of 

experiencing infant mortality compared to mothers’ who were not educated. Oftenly, 

maternal education is viewed as an indication of level of skills and knowledge of the mother 

which help in the effective use of available child care resources such as health services 

which is assumed to lower child and infant mortality, however, the findings from this study 

indicated that there was no significant association between infant mortality and mother's 

education level. This was in agreement with studies such as (Dube, 2012) which found that 

education was an insignificant determinant of infant mortality in Zimbabwe and this is 

expected because mother's education is more strongly associated with child mortality than 

infant mortality (Lemani, 2013). These results were also similar to the (Makoena, 2011) 

study on risk factors associated with high infant and child mortality in Lesotho where it 

was found that there was no significant association between mother's education and 

childhood mortality.  
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Religion is a factor that is assumed to play a part in infant mortality because of the different 

beliefs that religions have. For example Pentecostalism is usually characterized by less 

trust in conventional medicine which make these groups particularly sensitive to the threats 

to the welfare of young children which might account for higher infant mortality rates in 

communities with a large proportion of Pentecostal churches (Garcia et al., 2012).This 

factor was found to be insignificant by the log rank test but after adjusting for other 

covariates some of its subcategories were found to be significant  in the Cox proportional 

hazard model. The results indicated that Children born from families with other religion 

category have a higher chance of dying before reaching the age of one year compared to 

children born from catholic families. The results from this study are similar to what was 

observed in Zimbabwe where religion was significantly associated with infant mortality in 

such a way that members of Zionist and Apostolic churches showed a historical higher 

infant mortality than members of mission churches(Gregson et al., 1999). 

 

Both the log rank test and Cox proportional hazard model results showed that sex of 

household head was a significant covariate. Children born from female headed household 

(FHH) were more likely to die before the age of one year compared to children from male 

headed households (MHH) headed by males. This is the case because there is a difference 

in economic conditions of FHH and MHH in such a way that FHH are generally poorer 

than MHH and families with low economic status(poor) usually have higher percentage of 

infant deaths due to lack of better access to health services (Gupta, Ashish Kumar, 

Borkotoky, 2015). 

 

For the environmental factors, place of delivery and source of drinking water are the 

covariates whose subcategories were found to have a significant association with infant 

mortality. The results were in agreement with studies such as (Folasade, 2000), which 

found that source of drinking water and child mortality were significantly associated in 

Nigeria. The (Ezeh, Osita,Agho, 2014) study also had consistent results where it was found 

that the mortality from unimproved water and sanitation was significantly  higher by 38% 

compared to improved water and sanitation. 



59 
 

 

The source of drinking water has an impact on infant mortality in a way that children are 

more vulnerable to the health hazards associated with unimproved water supply and 

sanitation because their immune, respiratory and digestive systems are still developing 

(Ezeh, Osita,Agho, 2014). The place of delivery results of this study are in agreement with 

the (Ajaari et al., 2012) study which found that there were more neonatal deaths among 

deliveries outside health facilities than among deliveries within health facilities. Place of 

delivery is a significant predictor of infant mortality because children delivered at a health 

facility are likely to experience lower mortality than children delivered at home because 

health facilities provide sanitary environment and medically correct birth assistance (Ajaari 

et al., 2012). 

 

Infant mortality is higher in boys than girls in most parts of the world and this has been 

explained by sex differences in genetic and biological makeup in such a way that boys are 

biologically weaker and more susceptible to diseases and premature death (Pongou, 2013). 

This study however, had another interesting finding, the Cox proportional hazard model 

results indicated that males had a lower chance of dying before reaching the age of one 

year than females. These results are in contrast with the (Ashorn et al., 2002) and (Lemani, 

2013) studies which found that males had a higher risk of infant mortality compared to 

females. 

 

Type of birth was also found to have a highly significant association with infant mortality 

in both the log rank analysis and Cox proportional hazard model. It was found that women 

who have single births had a lower risk of experiencing infant mortality compared to 

mothers who have multiple births. These results are consistent with the results from 

(Uthman et al., 2008) study which found that children born multiple births were more than 

twice as likely to die during infancy as infants born singleton. A possible reason for this 

observation is that multiple births are high-risk births that require special and expensive 

care (Uthman et al., 2008). Multiple-birth children are also at a greater risk of birth defects 

and disabilities (Uthman et al., 2008). 
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Frailty modelling of infant mortality was done using the semi-parametric methods and 

parametric methods. For the semi-parametric frailty models to account for 

family/household effects and community effects results indicated that infant deaths are 

likely to cluster in families due unmeasured factors which is in agreement with studies such 

as (Madise & Diamond, 1995) and (Bolstad & Manda, 2001) which found that infant 

mortality tend to cluster in families in Malawi. This indicates that there are differences in 

infant mortality risks between families and the family effect may be a result of biological 

factors, such as hereditary diseases, or different child care practices, immunization and 

nutrition (Madise & Diamond, 1995).Whilst for the community effects there was not 

enough evidence to show the existence of unobserved heterogeneity at community level 

because the model did not converge. This would be expected, because during the infant 

period, the child is mostly kept in the house and does not interact much with the community 

outside the family. These results are in contrast with the (Omariba et al., 2007) study where 

it was found that effects of unmeasured environmental factors and community factors are 

important for child mortality. 

 

For the parametric frailty models, the first part, Weibull distribution and gamma frailty 

were used to fit the models. It was found that there was not enough evidence that both 

household and community effects play a role in infant mortality. The second part used log 

normal distribution and gamma frailty, and there was not enough evidence to conclude for 

both household and community effects. 

 

5.2 Conclusion 

This study examined the factors associated with infant mortality whilst controlling for 

household and community effects. It was found that SHH, mothers’ age group, source of 

drinking water, religion, type of birth and place of delivery had a significant association 

with infant mortality. Particularly, the results indicated that FHH are at a higher risk of 

experiencing infant mortality and mothers who had single births had a lower chance of 

experiencing infant mortality compared to mothers who had multiple births. They also 

indicated that mothers who had children at older ages were at a higher risk of experiencing 

infant mortality compared to women who birthed children at younger ages. Furthermore, 
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this study found that there existed some unobservable family/household effects which tend 

to make infant deaths cluster in some families. 

 

Although Malawi has managed to achieve a significant reduction in infant and child 

mortality rates, the rates remain high compared to most African countries as such there is 

need for more effort to reduce these mortality rates. This study provided insights into the 

risk factors of infant and child mortality in Malawi, which contains vital information for 

health policy makers in government and non-governmental organizations. 

 

In conclusion, this study revealed that SHH, mothers’ age group, source of drinking water, 

religion, type of birth and place of delivery are associated infant mortality and that there 

are unobservable family effects which make infant deaths to cluster in some families. These 

factors need to be considered when planning and developing policies against infant 

mortality in order to successfully work towards reducing infant mortality rate in Malawi.  

 

5.3 Recommendations 

Recommendations from this study are that, mothers should be sensitized on the importance 

of having child deliveries in health facilities to avoid birth complications and loss of child 

if birthed at home. Women who have a family history of multiple births should be educated 

on the high risks that multiple births have and should be closely monitored during 

pregnancy. There is also need to identify and educate the religions that deny their members 

of traditional and medical medicine about the importance of medicine.  

 

Women should be encouraged to have children before they turn the age of 40 years to avoid 

the birth complications which occur due to old age. Families need to be sensitized on the 

importance of using clean water as a source of drinking water and teach them ways of 

cleaning water such as boiling the water before use. Families which have experienced 

multiple infant deaths need to be identified as vulnerable households and studied to find 

out what makes them vulnerable and help reduce the infant mortality rate. 
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This study has been conducted using nationally representative data with a large sample 

size, although this sample is a fragment of the population of the Malawian women who 

experienced childbearing in the last five years before data collected, it gives a 

representative picture of the population at the time of the MDHS 2015-2016 survey. Thus, 

the sample can be understood to be a true reflection of the Malawian women who had given 

birth in the last five years prior to the survey.  

 

However, the study had a number of limitations in both data sources and methodology 

which might have affected the results. There are some critics that the DHS survey is 

associated with which include collection of data from women aged 15-49 who are alive in 

a given household which means that no information is collected for mothers who have died 

and this creates a bias in the results. It was a challenge to control for community effects 

because the MDHS data doesn’t have specific community characteristics. 
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APPENDICES 

APPENDIX A 

Table 20: STATA CODES 

1 use "C:\Users\Esther.Khundi\Desktop\school\graphs\dhs2.dta” 

2 gen hypage=(V008-B3)/12 

3 label varhypage "Age of child at interview" 

4 gentimeyears=. 

5 replace timeyears=hypage 

6 replace timeyears=(B7/12) if B5==0 

7 gen dead=(B5==0) 

8 label vartimeyears "survival time of the child in years" 

9 label var dead "the child is dead" 

10 gen hypmonth=V008-B3 

11 gentimemonths=. 

12 replace timemonths=hypmonth 

13 replace timemonths=B7 if(B5==0) 

14 label varhypmonth "age of child in months" 

15 gen status=. 

16 replace status=0 if B5==1 

17 replace status=1 if B5==0 
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18 label var status "The survival status of the child" 

19 label define status 1"dead" 0"alive" 

20 label values status status 

21 stsettimemonths, failure(status==1) exit(timemonths==12) 

22 tabstattimemonths, by(dead) statistics(n mean sd min q max) columns(statistics) format(%8.2f)  

23 tabulate dead B4, row 

24 tabulate dead V190, row 

25 tabulate dead M18, row 

26 tabulate dead V130, row 

27 tabulate dead V151, row 
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Table 21: STATA CODES CONTI… 

28 tabulate dead V102, row 

29 tabulate dead M15, row 

30 tabulate dead V113, row 

31 tabulate dead V106, row 

32 tabulate dead V013, row 

33 tabulate dead B0, row 

34 ltabletimemonths status 

35 sts graph, by(B4) risktablegraphregion(fcolor(white)) 

36 sts graph, by(V190) risktablegraphregion(fcolor(white)) 

37 sts graph, by(V013) risktablegraphregion(fcolor(white)) 

38 sts graph, by(V113) risktablegraphregion(fcolor(white)) 

39 sts graph, by(V106) risktablegraphregion(fcolor(white)) 

40 sts graph, by(V102) risktablegraphregion(fcolor(white)) 

41 sts graph, by(V151) risktablegraphregion(fcolor(white)) 

54 sts test V130 

55 sts test V151 

56 sts test V190 

57 stCox i.B4 i.V190 i.M15 i.V130 i.V106 i.B0 i.V113 i.V151 i.V013 i.V102 i.M18 

58 stCox i.B0 
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59 eststo model_1 

60 stCox i.V013 i.V113 i.B0 i.M15 i.V151 

61 eststomodel_final 

62 lrtest model_1 model_final 

63 stCox i.B0 i.M15 

64 eststo model_2 

65 lrtest model_2 model_final 

66 stCox i.B0 i.M15 i.V013 

67 eststo model_3 
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Table 22: STATA CODES CONTI… 
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68 lrtest model_3 model_final 

69 stCox i.B0 i.M15 i.V113 

70 eststo model_4 

71 lrtest model_4 model_final 

72 stCox i.B0 i.M15 i.V113 i.V151 

73 eststo model_5 

74 lrtest model_5 model_final 

75 estout model_2 model_3 model_4 model_5 model_final, stats(n chi2 bic, star(chi2)) 

prehead("Betas") 

76 estatphtest, detail 

77 stphtest, log plot(2.B0) yline(0) graphregion(fcolor(white)) 

78 stphtest, log plot(2.B4) yline(0) graphregion(fcolor(white)) 

79 stphtest, log plot(12.M15) yline(0) graphregion(fcolor(white)) 

80 stphtest, log plot(2.M18) yline(0) graphregion(fcolor(white)) 

81 stphtest, log plot(2.V102) yline(0) graphregion(fcolor(white)) 

82 stphtest, log plot(2.V106) yline(0) graphregion(fcolor(white)) 

83 stphtest, log plot(2.V013) yline(0) graphregion(fcolor(white)) 

84 stphtest, log plot(12.V113) yline(0) graphregion(fcolor(white)) 

85 stCox  i.B4 i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.V151 i.V013 i.V102 i.M18,shared(V002)    

86 estatic 

87 stCox  i.B4 i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.V151 i.V013 i.V102 i.M18,shared(V001) 
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88 streg  i.B4 i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.V151 i.V013 i.V102 i.M18, dist(weib) 

frailty(gamma) shared(V002) 

89 estatic 

90 streg  i.B4 i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.V151 i.V013 i.V102 i.M18, dist(weib) 

frailty(gamma) shared(V001) 

91 estatic 

92 streg  i.B4 i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.V151 i.V013 i.V102 i.M18, dist(lnormal) 

frailty(gamma) shared(V002) 

93 estatic 

94 streg  i.B4 i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.V151 i.V013 i.V102 i.M18, dist(lnormal) 

frailty(gamma) shared(V001)   

95 estatic 



74 
 

APPENDIX B 

 

 

Figure 8: Survival estimates by type of birth 

 

 

Figure 9: Survival estimates by mother’s education 
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 Figure 10: Survival estimates by source of drinking water 

 

 

Figure 11: Survival estimates by place of delivery 
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Figure 12: Survival estimates by area of residence 

 

 

Figure 13: Survival estimates by religion 

 

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

su
rv

iv
a
l p

ro
b

a
b

ili
ty

0 5 10 15
time in months

V102 = Urban V102 = Rural

Kaplan-Meier survival estimates

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

su
rv

iv
a
l p

ro
b

a
b

ili
ty

0 5 10 15
time in months

V130 = Catholic V130 = CCAP

V130 = Anglican V130 = Seventh Day Adventist / Baptist

V130 = Other Christian V130 = Muslim

V130 = No religion V130 = Other

Kaplan-Meier survival estimates



77 
 

 

Figure 14: Survival estimates by size at birth 

 

 

Figure 15: Residual plot for Mother’s age group 
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Figure 16: Residual plot for Place of Delivery 

 

 

Figure 17: Residual Plot for Mother’s Education level 
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Figure 18: Residual plot for Sex of household head 
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APPENDIX C 

Table 23: Log normal frailty model for household effects 

Covariate Coefficient      Std Error            z  P>z                   [95% Conf. Interval] 

B4    

Female -.082            0.096          -0.86 0.391 (-0.272,0.106) 

V190    

Poorer -0.134       0.141                     -0.95 0.341                (-0.411,0.142) 

Middle -0.190        0.149-1.28 0.202                (-0.483, 0.102) 

Richer 0.130         0.164                   0.80 0.427(-0.191, 0.452) 

Richest 0.145          0.220                     0.66 0.511                 (-0.288,0.578) 

M15    

Other home -0.404          0.460-0.88 0.380                   (-1.308,0.498) 

Government.. 
-0.098            0.281                  -

0.35 
0.725                    (-0.651, 0.453) 

Government.. -0.257            0.272      -0.94 0.346                    (-0.792,0.277) 

Government.. -0.304            0.512               -0.59 0.553                    (-1.307,0.699) 

Other publ.. 5.191          36029.33 0.00 1.000( -70610.99, 70621.37) 

Private ho.. -0.946        0.393-2.40 0.016                     (-1.717, -0.175) 

CHAM / MIS.. 0.135           0.342                   0.39 0.693                    ( -0.535,0.805) 

CHAM / MIS.. -0.530            0.332               -1.60 0.110                     (-1.183,0.121) 

Other -0.011            0.506                -0.02 0.981                     ( -1.005,0.981) 

V130    

CCAP 0.106         0.180                     0.59 0.557(-0.248,0.460) 

Anglican 0.566         0.314                     1.80 0.071     (-0.049, 1.182) 

Seventh Da.. 0.088           0.227                    0.39 0.699     (-0.358,0.534) 
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Other Chri.. 0.045          0.137                    0.33 0.742                         (-0.223,0.313) 

Muslim 0.200         0.179                     1.12 0.264 (-0.151,0.552) 

No religion 7.8633370.088 0.00 0.998                   (-6597.388, 6613.115) 

Other 
-1.877      1.132                       -

1.66 
0.097(-4.096,0.341) 

B0    

1st of mul.. -0.518            0.318-1.63 0.104                      (-1.144, 0.106) 

2nd of mul.. 
-0.814             0.286                 -

2.84 
0.005                      (-1.376, -0.251) 

V113    

Piped to y.. 0.319         0.3720.86 0.390(-0.409.1.049) 

Piped to n.. 1.426       0.526                      2.71 0.007                      (0.395, 2.458) 

Public tap.. 0.812        0.389                      2.08 0.037                       (0.048, 1.575) 

Tube well .. 0.995       0.388                       2.56 0.010                       (0.233, 1.757) 

Protected .. 1.395       0.506                       2.76 0.006                       (0.403, 2.388) 

Unprotecte.. 0.891        0.421                       2.12 0.034                        (0.065, 1.716) 

Protected .. 8.118        4764.516 0.00 0.999                 ( -9330.161, 9346.398) 

Unprotecte.. 0.835       0.510                      1.64 0.102                        (-0.164, 1.835) 

River/dam/.. 1.147      0.450                       2.55 0.011                         (0.264, 2.029) 

Rainwater 6.860     84065.43 0.00 
1.000                    (-164758.4, 

164772.1) 

Other 7.847      6785.051 0.00 0.999                    (-13290.61, 13306.3) 

Not a deju.. 1.883       0.970                     1.94 0.052        (-0.019, 3.786) 

V106    

Primary -0.137          0.157                -0.88 0.380                    (-0.445,0.169) 
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Secondary 
-0.095         0.201                    -

0.48 
0.634(-0.490,0.299) 

Higher 0.940           0.593                    1.58 0.113                    (-0.222, 2.104) 

V151    

Female 
-0.221          0.111                    -

1.99 
0.046                     (-0.440, -0.003) 

V013    

20-24 
-0.219       0.162                       -

1.36 
0.175                          (-0.537, 0.097) 

25-29 -0.278      0.175                      -1.59 0.112(-0.621,0.064) 

30-34 -0.184      0.185                      -0.99 0.321                           (-0.547,0.179) 

35-39 -0.376      0.200                      -1.88 0.060                           (-0.770,0.016) 

40-44 -0.896     0.250                      -3.58 0.000                          (-1.387,  -0.405) 

45-49 -1.421    0.326                       -4.35 0.000                          (-2.061,  -0.781) 

V102    

Rural -0.370        0.208                   -1.77 0.076                            (-0.779,0.038) 

M18    

Larger tha.. 0.106         0.202                       0.52 0.600(-0.290, 0.503) 

Average 
-0.058         0.188                    -

0.31 
0.754                    (-0.427, 0.309) 

Smaller th.. -0.504        0.215                    -2.34 0.019                     (-0.926, -0.082) 

Very small 
-0.027       0.290                      -

0.09 
0.924                     (-0.597, 0.542) 

Don't know -0.713        0.459                    -1.55 0.120                       (-1.612, 0.186) 

_cons 1.660      0.548                         3.03 0.002                       (0.585, 2.736) 
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/ln_sig 0.354        0.047                      7.49 0.000                              (0.262, 0.447) 

/ln_the -2.035      0.827                     -2.46 
0.014                             (-3.657, -

0.412) 

sigma 1.426          0.067 1.299      1.564 

theta 0.130         0.108 0.0258    0.661 

Likelihood-

ratio 
test of theta=0: chibar2(01) =1.80 Prob>=chibar2 = 0.090 
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Table 24: Log normal frailty model for community effects 

_t Coef. Std. Err z P>z [95% Conf. Interval] 

B4     

Female -.0804336 .0963455 -0.83 0.404 -.2692673 .1084001 

V190     

Poorer -.1338625 .140941 -0.95 0.342 -.4101018 .1423769 

Middle -.1978521 .1485672 -1.33 0.183 -.4890384 .0933342 

Richer .1255289 .1637349 0.77 0.443 -.1953856 .4464435 

Richest .1352733 .2196273 0.62 0.538 -.2951883 .5657349 

M15     

Other home -.3775234 .4577643 -0.82 0.410 -1.274725 .5196781 

Government.. -.1002638 .2813505 -0.36 0.722 -.6517007 .4511732 

Government.. -.2538095 .2724146 -0.93 0.351 -.7877323 .2801134 

Government.. -.2956098 .5091125 -0.58 0.561 -1.293452 .7022324 

Other publ.. 7.310202 6246195 0.00 1.000 -1.22e+07 1.22e+07 

Private ho.. -.9175255 .3900044 -2.35 0.019 -1.68192 -.1531311 

CHAM / MIS.. .1264909 .3415179 0.37 0.711 -.5428718 .7958537 

CHAM / MIS.. -.5240594 .3316949 -1.58 0.114 -1.17417 .1260506 

Other -.0268422 .5077041 -0.05 0.958 -1.021924 .9682396 

V130     

CCAP .1037142 .1805522 0.57 0.566 -.2501616 .4575901 

Anglican .5505175 .3135294 1.76 0.079 -.0639888 1.165024 

Seventh Da.. .0737437 .2272455 0.32 0.746 -.3716492 .5191367 

Other Chri.. .0373721 .13636 0.27 0.784 -.2298886 .3046328 

Muslim .1876383 .1788422 1.05 0.294 -.1628861 .5381626 
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No religion 10.27827 921345.3 0.00 1.000 -1805793 1805814 

Other -1.921634 1.132423 -1.70 0.090 -4.141142 .2978731 

B0     

1st of mul.. -.5049252 .3164683 -1.60 0.111 -1.125192 .1153412 

2nd of mul.. -.8030826 .2841468 -2.83 0.005 -1.36 -.2461651 

V113     

Piped to y.. .324351 .3690399 0.88 0.379 -.3989538 1.047656 

Piped to n.. 1.4074 .5240106 2.69 0.007 .3803577 2.434441 

Public tap.. .7804939 .3857908 2.02 0.043 .0243578 1.53663 

Tube well .. .9598354 .3840331 2.50 0.012 .2071443 1.712527 

Protected .. 1.348098 .5037817 2.68 0.007 .3607036 2.335492 

Unprotecte.. .8564605 .4161914 2.06 0.040 .0407403 1.672181 

Protected .. 10.21098 653828.6 0.00 1.000 -1281470 1281491 

Unprotecte.. .8114336 .5050576 1.61 0.108 -.178461 1.801328 

River/dam/.. 1.103921 .4461117 2.47 0.013 .2295579 1.978284 

Rainwater 8.760713 9609659 0.00 1.000 -1.88e+07 1.88e+07 

Other 10.10654 1506550 0.00 1.000 -2952774 2952794 

Not a deju.. 1.880139 .9698175 1.94 0.053 -.0206681 3.780947 

V106     

Primary -.1365481 .1571049 -0.87 0.385 -.4444681 .1713719 

Secondary -.0988768 .2014273 -0.49 0.624 -.4936671 .2959134 

Higher .9296382 .5929107 1.57 0.117 -.2324455 2.091722 

V151     

Female -.2279418 .1110751 -2.05 0.040 -.445645 -.0102386 
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V013     

20-24 -.2320593 .1618395 -1.43 0.152 -.549259 .0851403 

25-29 -.281676 .1747884 -1.61 0.107 -.6242551 .060903 

30-34 -.1919769 .1852599 -1.04 0.300 -.5550797 .1711259 

35-39 -.3763069 .2003535 -1.88 0.060 -.7689927 .0163788 

40-44 -.9216202 .2488654 -3.70 0.000 -1.409387 -.4338529 

45-49 -1.431121 .3225633 -4.44 0.000 -2.063334 -.798909 

V102     

Rural -.3599173 .2078115 -1.73 0.083 -.7672204 .0473858 

M18     

Larger tha.. .0990319 .2024025 0.49 0.625 -.2976698 .4957336 

Average -.0570779 .1877803 -0.30 0.761 -.4251204 .3109647 

Smaller th.. -.4919836 .2145574 -2.29 0.022 -.9125085 -.0714588 

Very small -.0403739 .2903094 -0.14 0.889 -.6093698 .528622 

Don't know -.7720519 .4597998 -1.68 0.093 -1.673243 .1291393 

_cons 1.712176 .5450584 3.14 0.002 .643881 2.780471 

/ln_sig .3601193 .0471199 7.64 0.000 .267766 .4524726 

/ln_the -15.37195 557.3202 -0.03 0.978 -1107.699 1076.956 

sigma 1.4335 .0675464 
1.307041 

1.572195 
 

theta 2.11e-07 .0001175   

Likelihood-

ratio 

test of theta=0: chibar2(01) 

= 
0.00 

Prob>=chibar2 = 

1.000 

 


