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ABSTRACT

Infant mortality rate is one of the important health and development indicators in a country
or community and that is why reduction of infant mortality has been the main target of
public health policies for the past decades. Malawi, like many countries in the sub Saharan
Africa is a country that suffers from the highest rates of infant mortality across the globe.
Studies have been conducted to identify factors associated with infant mortality in Malawi
but none of these studies used recent data. This study used the most recent survey data to
identify the factors associated with infant mortality in Malawi by using survival analysis
techniques and frailty modelling to control for unobserved heterogeneity using. The data
used for this study was from the 2015-16 Malawi Demographic Healthy Survey (2015-16
MDHS) and was obtained from DHS program website: https://www.dhsprogram.com.
Bivariate analysis was conducted to identify variables that had significant association with
infant mortality in Malawi using both Kaplan-Meier and log rank test and were
subsequently considered into the cox proportional hazard model analysis to estimate their
strength of effect on infant mortality in Malawi. The variables were also modelled using
both the semi parametric cox frailty model and parametric frailty models to find the best
fit model using the maximum likelihood estimation. The results showed that sex of
household head, mothers’ age group, source of drinking water, religion, type of birth and
place of delivery were significantly associated with infant mortality and that there are
unobservable family effects which make infant deaths to cluster in some
households/families.
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CHAPTER 1

INTRODUCTION

This chapter introduces the study by first discussing the background and context, followed

by the statement problem and objectives of the study.

1.1 Background

Infant mortality refers to the death of a child before reaching one year of age, and it is a
global burden especially in developing countries like Malawi (Ndawala, 2015). Infant
mortality includes prenatal mortality, neo natal mortality and postnatal mortality which are
defined as death that occur in the first week after birth, death that occur within 28 days of
birth and death that occur between 28 and 364 days after birth respectively (Ndawala, 2015)
. Infant mortality rate (IMR) is sensitive to general structural factors like socio-economic
development and basic living conditions, as such it is regarded as an important national
health indicator (Sartorius, Kurt, Sartorius, 2014).When a country has high infant mortality
rate, it is an indication of unmet human health needs such as sanitation, medical care,
nutrition and education (Treibe, 2009). The estimation of mortality in childhood
traditionally focused on mortality below one year of age because mortality at early ages is
highest among infants and also because measures of mortality for the age range 0 to 1 year

can be obtained solely from registration data when those data are reliable (Nations, 1989).

There is still a big gap in infant mortality between developing and developed countries.
Research shows that 1 in 36 children dies during the first month of life (neonates) in Sub-
Saharan Africa, compared with 1 in 333 in developed countries (Ouatarra, 2018). The
United Nation’s Sustainable Development Goal 3 (SDGSs) seeks to put an end to avoidable

new-born deaths before 2030, which contributes to infant mortality. Over 60 countries will



fail to meet the United Nation’s Sustainable Development Goal 3 if considerable progress
is not made (Ouatarra, 2018).

Research shows that there was a 2.5 percent annual decline in global child mortality
between 1960 and 1990, with Sub-Saharan Africa (SSA) having the slowest decline, (Jahn
et al, 2010) of about 1.0 percent in the 1960s, 2.0 percent between 1970 and 1985, and 1.0
percent between 1985 and 1990. Resulting to an annual average decline of about 1.3
percent between 1960 and 1990, (Hill, Kenneth, Amouzou, 2006).Children born in Sub-
Saharan Africa today have a life expectancy of 51 years and almost 10.0 percent of them
die in the first year of life. Approximately 4.1 million deaths occurred globally within the
first year of life in 2017, accounting for 75 percent (of all under-five deaths (Tesfa et al.,
2021). The contribution of infant deaths to overall child mortality has increased over the
years and has reached 75.0 percent. It is important to target children under the age of 1 year
(infants), and call for urgent and concerted action to further improve the survival chances
of world's children (WHO, 2016).

Progress in the reduction of infant and child mortality accelerated in the period 2000-2017
as compared to the 1990s period with an annual rate reduction in the global under five
mortality rates having increased from 1.9 percent in 1990-2000 to 4.0 percent in 2000-
2017.An estimated 5.4 million children under 5 years died in 2017, (Roser, Max, Ritchie,
Hannah, Dadonaite, 2013) and half of all these deaths, about 2.7 million, took place in sub
Saharan Africa, (Hug, Lucia, Sharrow, David, Zhong, 2018). Even though infant mortality
significantly declined worldwide, the decline in SSA was unsatisfactory which was,
92/1000 live births in 2000 to 53/1000 live births in 2018 (Tesfa et al., 2021).

1.2 Problem Statement

Malawi, like many countries in the Sub-Saharan Africa suffered from the highest rate of
infant mortality. Malawi's infant mortality rate was at 37.828 deaths per 1000 live births in
2020 (Plecher, 2020). In 2020, the mortality rate among children under the age of 1 year in

Africa was around 41.6 deaths per thousand live births. Although infant mortality rate of



Malawi fell gradually from 164.75 deaths per thousand live births in 1971 to 36.08 deaths
per thousand births in 2021, this infant mortality rate is still high.

Infants are particularly vulnerable to their immediate living conditions and suffer the
highest consequences of negative health outcomes from socio-economic issues and social
disadvantages. As such, it is important that infant mortality be a focal point in societies to
ensure that infant mortality levels are kept low. Studies have been conducted on infant
mortality in Malawi but infant mortality rate is still high. To mention a few, (Madise &
Diamond, 1995) used a logistic binomial model to analyze 1988 child spacing survey data
to identify determinants of infant mortality and another study conducted by (Kalipeni &
Moise, 2015) that used 1990-2010 Malawi demographic and health survey (MDHS) data
to assess the reduction of infant mortality. The aim of this study was to apply survival
analysis techniques to identify factors associated with infant mortality in Malawi using the

recent demographic and health survey dataset.

1.3 Objectives
i.  To examine the association between infant mortality and determinants in
Malawi
ii. To examine the effects of unobserved heterogeneity (frailty) on infant
mortality both at family and community level

iii.  To find the best fit model for infant mortality data



CHAPTER 2

LITERATURE REVIEW
2.1 Chapter Overview

This chapter provides an overview of previous research on infant mortality which includes
the methods used to conduct the studies, their findings and recommendations made. The
chapter further provides an overview on survival analysis, frailty modeling and their

different estimation methods.

As discussed in chapter 1, many studies have been conducted on infant mortality and this
is because infant mortality rate is considered to be one of the key health indicators in an
economy (Nasejje, 2015).This chapter summarizes the literature on non-statistical issues

of infant mortality and statistical methods used when analyzing infant mortality data.

There are many classical modelling methods used in the examining of factors associated
with infant mortality which include Bayesian analysis, logistic regression, Cox
proportional hazard model (CPH) and simple correlation method, just to mention a few.
However, Logistic regression analysis and CHP are the most commonly used method and
that is why the two have been discussed further in this chapter. Logistic regression models
the probabilities for classification problems with two possible outcomes i.e. this method
requires a binary response variable. It is an extension of the linear regression model for
classification problems, some of the basic assumptions that must be met for logistic
regression include independence of errors, linearity in the logit for continuous variables,
absence of multicollinearity, and lack of strongly influential outliers. Logistic regression
however, does not determine the causal relationship between an independent variable and
the outcome variable, but rather will allow for the describing of the variables associated to
infant mortality (Dube, 2012).The logistic regression model was used by (Lemani, 2013)

to study the survival of infant children in Malawi where it was claimed that the logistic



method has low statistical power on censored children compared to the Cox proportional
hazard model, as such it is problematic to use it when the time to exposure is short and

when the risk of experiencing an event of interest vary with time.

Another method which is commonly used is the standard Cox proportional hazards model
which is applicable when the interest is in time-to-event data and the data is assumed to be
independent. Studies which use DHS data which is obtained from a cluster survey and
assumed to be correlated violates the statistical assumption of interdependence when the
standard Cox proportional hazard model is used and it does not adjust for unobserved
confounders. In order to adjust for unobserved covariates there is need to use the Cox-
frailty model method to examine factors associated with infant mortality since this model
assumes that the risk of death of an individual is a function of measured factors and a
random term on the baseline hazard due to the unobserved cluster effect (Khan & Awan,
2017) . It is important to use frailty modelling because of its capabilities in accounting for
unobserved or unobservable risk factor effects in survival data analysis, (Niragire et al.,
2011).

High infant mortality rates may increase fertility rates because families want to replace the
lost children and high fertility rates pose a health risk to women and children. Research
showed that in every year, an estimated 529 000 women die in pregnancy or childbirth
(WHO, 2004) and the timing of births has an impact on child health in such a way that
when a woman doesn’t have adequate child space, the new baby is often born underweight
or premature, develops too slowly, and has an increased risk of dying before reaching the
age of 1 year (Rustein, 2005). It was discovered that children born less than 2 years after
the previous birth are about 2.5 times as likely to die before age 5 than children who are

born 3-5 years apart (Setty-Venugopal, Upadhyay, 2002).

Malawi is a country in the sub-Saharan region and is characterized by high infant and child
mortality which was estimated to be 104 deaths per 1000 live births and 95 deaths per 1000
live births respectively using data from the 2000 Malawi Demographic and Health Survey
(Kalipeni & Moise, 2015).



Afeez et al. (2018) conducted a retrospective study to find out the risk factors responsible
for infant mortality in Nigeria. Kaplan Meier curve was plotted to describe the rate of
survival of some of the factors responsible for infant mortality. The log-rank test was used
to test the null hypothesis that there is no difference between populations in the probability
of an infant dying. The Cox-Proportional Hazard Model was fitted to assess the importance
of various covariates in the survival times of infant through the hazard ratio. It was found
that religion, sex of child, area of residence, economic status of the family and age of
mother at birth are factors associated with infant mortality.

A national time series of NMR (Neonatal Mortality Rate) and neonatal deaths, was
estimated using the UN IGME (United Nations Inter-agency Group for Child Mortality
Estimation) multilevel statistical model with random effects parameters for level regression
parameters at country level. UN IGME used an abridged life table approach and to calculate
the absolute number of deaths among infants and children under-five in a given year and
country (Walker et al., 2012). It was reviewed how relevant data from civil registration,
sample registration, population censuses, and household surveys are compiled and assessed
for United Nations member states. It was also reviewed how time series regression models
are fitted to all points of acceptable quality to establish the trends in USMR (under-five
mortality rate) from which infant and neonatal mortality rates are generally derived. The
application of this methodology indicated that, between 1990 and 2010, the global USMR
fell from 88 to 57 deaths per 1,000 live births, and the annual number of under-five deaths
fell from 12.0 to 7.6 million(Walker et al., 2012). Although the annual rate of reduction in
the USMR accelerated from 1.9 percent for the period 1990-2000 to 2.5 percent for the
period 2000-2010, it remains well below the 4.4 percent annual rate of reduction required
to achieve the MDG 4 goal of a two-thirds reduction in USMR from its 1990 value by 2015
(Walker et al., 2012).

A study on infant mortality and causes of infant deaths in rural Ethiopia conducted by
Weldearegawi et al (Weldearegawi et al., 2015), used multiple Cox proportional Hazards
regression model to investigate risk factors for infant death and causes of infant death were

identified using physician review verbal autopsy method. It was found that mother’s level



of education, mother’s age, pre-mature birth, respiratory infections and sepsis were the

common causes of infant death.

A study conducted by (Nutiye, 2009) aimed to examine factors that are correlated with
infant mortality in Turkey. The study used survival analysis and logistic regression to
analyze data from the 2003-2004 Turkey demographic and health survey. The results of
the study showed that birth interval is associated with infant mortality, breastfeeding is
important for the survival chance of the infants under the age 3 months. Place of delivery
and source of water the family uses were also found to be correlated with infant mortality.
There was also a curvilinear relation between maternal age at birth and infant mortality
which indicated high risk for infants born from teenage mothers and old age mothers
(Nutiye, 2009).

(Bolstad & Manda, 2001) conducted a study where they investigated child mortality in
Malawi using family and community effects and applied a Bayesian analysis method. The
study found that early succeeding conception and short breastfeeding duration are the
factors that have the highest in-creased risk for a child. (Bolstad & Manda, 2001)also found
that there was more variability due to family effects than community effects in child
mortality. They further learned from the random effects model that infant and early child
deaths tend to cluster in some families and, to a lesser extent, in some communities. The
family variation summarizes the effects of biological, genetic, parental competence whilst
community variation summarizes the effects of differing community cultures and customs

which were not accounted for in the fixed effect model.

2.2 Logistic Regression

Logistic regression is one of the most commonly used model for applied statistics and
discrete data analysis. The logistic regression is a statistical analysis method used to explain
the relationship between a dependent variable and one or more independent variables. This
regression method is one of the generalized linear models with a logit link and works very
similar to linear regression, with the exception that the response (dependent) variable is

binomial taking the value of 1 if the event of interest occurred and 0 otherwise (Sperandei,



2016). The Logistic regression model is one of the most popularly used model in child
mortality studies because it assumes that child survival is a binary response, child is dead
or alive (Kazembe et al., 2012). Log-odds play an important role in logistic regression as
it converts the logistic regression model from probability based to a likelihood based

model.

The Logistic regression model equates the logit transform, the log-odds of the probability

of a success, to the linear component as shown below;

log (11_)_;,1.) = Ylezo XikBi i=12,..,n 2.1

Where k is the number of independent variables specified in the model, p is the probability,
X is an independent variable, f is the regression coefficient, i is the subject and n is the

sample size. The probability p in terms of the explanatory variable X is given by;

eXp(,B0+,Bixi) 2 2

Pi = exp(Bo+ Bix)

Where:

p;is the probability that the event of interest will occur
Bois the intercept

B is the regression coefficient for the explanatory variable Xi

2.2.1 Maximum Likelihood function for Logistic Regression
Maximum likelihood estimation is a probabilistic framework for estimating the parameters
of a model. The logistic regression goal is to estimate the k+1 unknown parameters in Eq.
2.2. The maximum likelihood equation is derived from the probability of the dependent
variable. Each y;i represents a binomial count in the i population as such the joint

probability density function of Y is given by;



fO18) = ?=1yi!(7zi;yi)!piyi(1 —p)"Y 2.3

And the likelihood function is given as;

i! i -
LBIY) = T} 5 P (1 = p)™ ™ 2.4

The values for B that maximize the likelihood function in Eq. 2.4 are called the maximum
likelihood estimates and these estimates are found by computing the first and second
derivative of the likelihood function since critical points occur when the first derivative is

a zero and if the second derivative is less than zero, then the critical point is a maximum.

Note that the factorial terms do not contain any of the p; as a result, they are essentially

constants that can be ignored. Also,a*™ = Z_y therefore the likelihood function can be

rearranged and written as;

()" (1 - pom

Pi
Exponentiating both sides of Eq. 2.1 it becomes;

pi
1-p;

k
— ezk=0 XikBr

And solving for p; result it;

k
eZk=0XikBk

Pi= 1 + eZk=o*ikBu

Sk=o%ikBl . : o
After substituting forp; = ————"_in equation 2.4 and simplifying its yield the log

1+e2k=0%ikPk

likelihood function;



N Kk
L(p) = Z Vi (Z xikﬁk) — 1. 1og( 1 + eZk-oxusbi)

i=1 k=0

Differentiating the log likelihood function with respect to each Bk it becomes;
al(B) _
T YNy Vi — PiXik 2.5

Critical points can be found by setting each of the k+1 equations in 2.5 equal to zero and
solving for each k. The critical point will be a maximum if the second partial derivatives

IS a negative definite. The second partial derivative is;

o*UPB) _
0810w §V=1 X Pi (1 — pi) X

2.2.2 Interpreting Parameters

Recall the logistic model;

k

bi .
1 (_> — E . =12,...N
08 1—p, XikBr l

k=0

Where% is the odds of an event occurring. The regression coefficient in the population

Di
model is the log odds ratio, log(OR) , which is the difference between two log odds and
can be used to compare the odds between two groups. The OR is obtained by

exponentiating J3;

ef = elo8OR = gR

We interpret OR > 1 as indicating a risk factor and OR < 1 indicating a protective factor.

10



2.3 Survival Analysis

Survival analysis is one of the highly active areas of research and is applied in many fields
of study which include engineering, physical, biological and social sciences (Nasejje,
2015). Survival analysis is a statistical method or tool which is used to analyze time to
events data and the time variable is usually referred to as survival time, because it gives
the time that an individual has “survived" over some follow up period. An outcome that is
of scientific interest is called an event and this event is observed in different studies like
sociology, biology, demography, medicine and employment (Nasejje, 2015). An event is
typically referred to as a failure. This is so because the event of interest is usually death,
disease incidence, or some other negative individual experience. However, survival time
may be something other than a failure such as “time to return to work after an elective
surgical procedure,” "time of courtship to wedding," in which case failure is a positive
event. In survival analysis the interest lies in the time for an event of interest to occur from
a given baseline and in this paper we are interested in the time it takes for an infant to die
from birth. This technique allows one to depict the pattern of experiencing a survival event
over time. There are four fundamental functions in survival analysis which include the
cumulative probability function F(t), the survival function S(t), the hazard function h(t) and

the cumulative hazard function H(t) (Nyinawajambo, 2018).

2.3.1 The survival Function
Assuming T is a continuous random variable with probability density function (p.d.f.) f(t)

and cumulative survival/failure function, F(t) = Pr(T <t), the survival function S(t) is given

by;

S(t) = Pr(T = t)=1 — F(O)=], f(x)dx 2.6

The expression above is the probability of surviving beyond time t. The survival function
is usually a downward sloping curve with time at the x-axis and survival probability at y

axis (Lemani, 2013), as indicated in the figure 1 below. The survival function S(t) is a non-

increasing function, S(0) =1 and S(x) = 0.

11
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S(e)

S
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Figure 1: Survival Function

2.3.2 The Hazard Function
Given a set containing individuals who are at a risk of experiencing a certain event denoted
by R(t) (risk set) where t represents the time, then the probability of an individual in the
risk set experiencing the event in the small time intervall[t; t + At] is defined as h(t) At and

the hazard rate is given as;
. 1
= — < > .
h(t) Al%r_r)loAtP(t_T< t+AtIT = t) 2.7

The hazard function characterizes the risk of dying that is changing over time and it takes
on any shape of a non-negative function and it varies depending on the type of survival
data given unlike the survival function which is a downward sloping curve for any type of
given survival data (Nyinawajambo, 2018). Some hazard functions, e.g. the exponential

survival function has a constant hazard rate, meaning it does not change with time.

Non-parametric, semi-parametric and parametric methods exist for survival methods and

these methods are discussed in the next section.

12



2.3.3 Non-Parametric Methods

Non-parametric methods are methods that do not make assumptions about a population’s
parameters, they are sometimes called “distribution free methods”. Non-parametric
methods are used to summarize survival data through estimates of the hazard and survival
function. The aim of non-parametric estimation of the survival function is to come up with
graphical summaries of the survival times for a given group of individuals considered in a
study. Non-parametric methods for survival analysis include Life-table, log-rank and
Kaplan Meier.

(i) Kaplan Meier Estimator
The Kaplan Meier estimator was originally derived as a non-parametric maximum
likelihood estimator of a function and as a limit of the actuarial estimator as the time axis
is partitioned into fine intervals. It is a non-parametric statistic, which is also known as the
product limit estimator which is used to estimate the probability of dying (the hazard
probability), the probability of surviving and median survival time. The Kaplan Meier
estimator uses the exact failure time to give a simple and quick estimate of the survival

function in presence of censoring (Lemani, 2013). It is denoted as;

S® = Tepee (1 - 725) 2.7
Where m; represents the number of deaths at time i, and r; — 1 represent the number of
subjects at the start of the study. Kaplan Meier technique takes into account both censored
and uncensored observations and assumes that censored times are independent to survival
times while estimating survival probabilities. This technique divides the follow-up period
into a number of small intervals and number of cases for each interval is determined and a
probability of surviving to the end of that time period is obtained when the surviving
proportion is multiplied by the surviving proportions for each of the preceding time periods
(Damato et al., 2011).The survival probability is then plotted against time. Thus, survival
function could be estimated using the Kaplan Meier graph. Under this graphical technique,
bivariate analysis of infant survival was depicted within and across districts using the DHS
data (Lemani, 2013).
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(i) Life Tables
The life table procedure is a conventional approach used since the 18" century to analyze
the distribution of mortality in a population. It takes into account information from
censored cases whose full observation period will not have elapsed at the time of interview
and whose survival outcome cannot therefore be recorded. The life table will allow
depicting survival ratios and failure rate at every time interval (WHO et al., 2013). This
method is an alternative method of Kaplan-Meier method with particularity of being able
to assess the survivorship function of groups of individuals even though there is no survival

information at individual level.

Let I, = number alive at the beginning of time t,

d; = number of deaths during the time interval
Then the probability of dying during the time interval is given by;

qt = I,
And the probability of dying during the time interval;

pr=1—-q;

(i)  Log Rank Test
The log rank test is a large-sample chi-square test that provides an overall comparison of
the Kaplan Meier curves being compared by using a statistic as a test criterion. Just like
many other statistics used in other kinds of chi-square tests, this log rank statistic makes
use of observed versus expected cell counts over categories of outcomes and the categories
for this log-rank statistic are defined by each of the ordered failure times for the entire data
being analyzed. The null hypothesis being tested is that there is no overall difference
between two survival curves. The log-rank statistic is approximately chi-square with one

degree of freedom under this null hypothesis. The log rank test however, does not provide
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an estimate of the size of the difference between groups or a confidence interval because it

is purely a test of significance.

2.3.4 Semi-Parametric Methods
(i) Cox Proportional Hazard Regression Model
The Cox-proportional hazard model is essentially a commonly used survival regression
model in medical research for investigating the association between the survival time of
patients and one or more predictor variables. It is called a semi-parametric method because
the distribution for the baseline hazard function is not specified. The Cox model was

introduced in 1972 and has the form;

A(t|X) = 2, exp(XTB) 2.8

Where A(t]|X) is the hazard at time t, for an individual with covariate X, A,(t) denotes the
baseline hazard function and assumed to be unique for all individuals in the study
population, X is the vector of observed covariates and (the respective vector of regression
parameters to be estimated(Cox, 1972). There are several important assumptions for
appropriate use of the Cox proportional hazard regression model which include,
independence of survival times between distinct individuals in the sample, a constant
hazard ratio over time and a multiplicative relationship between the predictors and the
hazard i.e. proportional hazard. The Cox model cannot be used in a situation where the
assumption of proportional hazard is violated because it assumes hazard proportionality.
The hazard ratio is the measure of the effect of the given covariates on survival time. For
Example, given a categorical variable with two levels say X =1 and X = 0, where group
1 have chemo before surgery and group 0 have chemo after surgery to compare the hazard
of death from cancer, the hazard ratio for the two groups is given as;

__ h(t|lx=1) _

HR = n(t|xX=0)

exp(f) 2.9

When HR = 1, it implies that the individuals in the two categories are at the same hazard
risk of dying, when HR > 1, it implies that the individuals in the first category (X = 1) are
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at a higher hazard of dying and if HR < 1, the individuals in the second category (X = 0)
are at a higher hazard of dying.

2.4 Cox-Fraitly Models
Proportional hazards (PH), and in particular the semi-parametric Cox model play a major
role in the modelling of continuous event times (Wienke, 2003).The Cox model assumes

the semi-parametric hazard;
Atlx) = Ag(D)exp(x{ B) 3.0

Frailty models aim at modelling the heterogeneity in the population, they can be used to
account for the influence of unobserved covariates (Vaupel & Manton, 1979). The
Parameter 6 provides information on the variability (dependency) of the population in the
same family or community. However, parameter estimation in frailty models is more
challenging than in the Cox model since the corresponding profile likelihood has no closed
form solution. In the Cox PH frailty model also known as the mixed PH model, the hazard
rate of subject j belonging to cluster i with n;j subjects, conditionally on the covariates Xij
and the shared frailty b; is given by;

)lij(t|xij, bl) :bilo(t) eXp(XZ;IB) i= 1, ., n, ] = 1, Ny

Where bi is the frailty term and frequently assumed to follow a gamma distribution because
of its mathematical convenience. There are two categories of frailty models which are the
univariate frailty models that consider univariate survival times and the multivariate frailty
models that take into account multivariate survival times (Wienke, 2003).The frailty, bi ,
is an unobservable random variable varying over the sample which increases the individual
risk if b > 1 or decreases if b < 1. When b > 1 (frailty is greater than one) an individual is
said to be at an increased hazard of failure therefore more frail than an average individual
in a cluster whilst when b < 1 the individual has a lower risk or is less frail therefore tends

to survive longer (Nasejje, 2015).
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2.4.1 Univariate Frailty Models
Univariate frailty models take into account the non-homogeneity of a population.
Unobserved heterogeneity comes about when important covariates have not been observed
even though heterogeneity maybe explained by covariates. (Vaupel & Manton, 1979)
introduced univariate frailty models (with a gamma distribution) into survival analysis to
account for unobserved heterogeneity or missing covariates in the study population. This
idea assumed that different patients possess different frailties and that the patients who are
more "frail” or "prone" tend to have the event earlier that those who are less frail. Assuming
that an individual child under the age of iwherei=1, 2,..., n has a survival time denoted
as t; and the covariate vector Xi has a frailty term denoted as b;, then the survival function

of individual i conditional on the frailty is given by;
T t;
Si(ti, Xi|b;) = exp (—biex‘ B I3 he Gs, Xi|bi)d5) = exp(—b;Hy(t;)exp(x{ B) 31

Where H,y(t;) = f;' ho (s)ds is the cumulative baseline hazard function (Nasejje, 2015).

Also assuming that the frailty follows a gamma distribution (a= ), with mean E(B)=1,
variance V (B) = % and the variance of b, the frailty term is denoted as 6, then V(B) :i =

6. The probability of a one parameter Gamma distribution f(b):

a®b* lexp(—ab)

b) =
f(®) e
Substituting % = 6 we obtain;
po 7 b
f(b) = =R Ee 32
r)6°

Now, letting T denote the random variable representing the survival times and b denote the
frailty with the Gamma distribution, then the conditional survival function is given by:

S;(t|b) = exp(=bH,(1))
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The z is then integrated out from the conditional survival function which gives the

unconditional survival function below;
Si(t) = E[S(t]b)] = [ ebHo exp(Xi YOS ()ab=L(H(®) 3.3

Where L denotes the Laplace transform. The likelihood is then calculated as;

L(t, Xi, B, 6) = TS [T bho () “exp (8:X5R), [S (1)1 2%, 3.4

Where G denotes the total number of clusters in the data set and n;j denotes the total number

of individuals in cluster i.

2.4.2 Multivariate Frailty Models
Multivariate frailty models have been used frequently for modelling dependence in
multivariate time-to-event data. The aim of the frailty is to take into account the presence
of the correlation between the multivariate survival times. Multivariate models with
dependent random hazards provide a multivariate extension of the traditional univariate
frailty model. Application of frailty models in the field of multivariate survival data is
important because such kind of data occurs for example if lifetimes (or times of onset of a
disease) of relatives (twins, parent-child) or recurrent events like infections in the same
individual are considered. The independence between the clustered survival times cannot
be assumed in such cases which where Multivariate models come in since they are able to
account for the presence of dependence between these event times (Wienke, 2003). The
dependence structure in the multivariate model arises from a latent variable in the

conditional models for multiple observed survival times.
2.4.2.1 Shared Frailty Model

The shared frailty model is relevant to event times of related individuals, similar organs

and repeated measurements. This model is called a shared frailty model because individuals
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in a cluster are assumed to share the same frailty (Wienke, 2003).Frailty is assumed to be
independent across the groups or clusters while the survival times of individuals within the
same group are conditionally dependent (Nasejje, 2015). A shared frailty model in survival

analysis is defined as follows;

Let bi denote the shared frailty that are assumed to be identically and independently
distributed random variables, T;j denote the survival time of the jw individual in the iwn
cluster given n clusters with nj individuals and vector Xj associated with the survival
time(Wienke, 2003), then the hazard function of the ji individual of the iw cluster is given

as:
hij () = biho (D)exp(X{;B) 3.5

2.4.3 Parameter Estimation
To obtain the derived estimates of the parameters, the likelihood function is differentiated
with respect to the parameters in the model and the resulting equations are then solved
simultaneously. Due to the presence of latent variables it is not usually possible to solve
the equations simultaneously with frailty models (Nasejje, 2015) and this requires us to use

a more advanced method. Some of these advanced methods include;

. The Expectation-Maximisation Algorithm (EM-Algorithm);
. The Markov Chain Monte Carlo (MCMC) methods;

. The Monte Carlo EM (MCEM) approach;

. The penalised partial likelihood (PPL).

The EM algorithm and the Penalised Partial likelihood methods are mainly used when the
survival data is right censored. With complicated forms of censoring like interval and left
censoring, more advanced Frailty modelling methods have to be used to estimate the
parameters of the model. Markov Chain Monte Carlo methods (MCMC) are the alternative

methods that can be used to estimate parameters of parametric frailty models in
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circumstances where there exists left and interval censored data points in the data set
(Nasejje, 2015).

Q) The Expectation-Maximisation Algorithm (EM-Algorithm)
Given the full likelihood Ly, (t;, ho, B, 6) and assuming that the frailties follow a gamma
distribution then the full likelihood of a shared frailty model of a cohort consisting of N
individuals, where each individual is assigned to a cluster and with a total number G

clusters where each cluster consists of nj number of individuals is given by:

G N
] . 5
Luntiho 8,0) = | || | 6o (ti) " exp(8:X58)exp(8ito(t)
i=0 j=1
1
G -+D;—1 —-b;
_ 1— b! exp (T)
i=1

r()ee

Where Di is the total number of events in the cluster i. The EM-algorithm method requires

the initial estimates for B, Ho(ti)) and 8( j3, ﬁo(tij) and 8 respectively) be found. The model
with no frailties is used to get the initial estimates fand H,(t; ;) and then use the obtained

estimates together with £ = 0 to get the expected values of the frailty terms (b;s) (Nasejje,
2015).For the Gamma frailty model, (Hanagal, 2011) argues that the distribution of the

frailty terms bi is a Gamma with the shape and scale parameters @ = ﬁ and 6 = % +
l

Y. Ho (ti;)expX[;B. Therefore the expected value of the frailties is given by;

(=N

E(b) =

i

~m)

E(In(by)) = (&) —In(6))

Where 1 (.)is a Di-gamma function given by;
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" T(a)

To obtain the estimates of B and h, at the M-step, the expected values of the frailty terms
are plugged into the modified partial likelihood (Nasejje, 2015) and the modified partial
likelihood is given by:

b
L(B) = Ty ——2 P 36
(Sierce blexp(x] B))

Where t;, is the smallest failure time, d;, is the number of failures at time t;, Dy is the set
of all individuals who fail at time ¢, and S, = Y. jcp, x;. The maximum likelihood estimate

for the baseline hazard function is obtained from the expression below:

— d
o= k 3.7
Ok ™S 1er(ey) lexp(XT )

To find the estimates of 6, the estimates of 3, b; and 1, are plugged in.

(i)  The Markov Chain Monte Carlo Methods (MCMC)
Another method in parameter estimation for frailty methods is the MCMC method. These
methods are statistical simulation techniques, Instead of writing down complex system of
equations, a process is directly simulated given the probability density functions that
describe it. Given the probability density functions (p.d.f's), its initial defining parameters
and current values of the other parameters, the simulation process begins by iteratively re-
sampling each parameter (Nasejje, 2015). They are known as Markov Chain Monte Carlo
(MCMC) methods because one uses the previous sample values to generate randomly the
next sample values which results into a Markov chain. An MCMC method consists of
generating a set of Markov chains whose joint stationary distribution corresponds to the
joint posterior of the model (Wienke, 2003). The posterior distribution is often very

difficult to work with in a hierarchical model and almost always impossible to integrate
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out in order to find the marginal posterior of each random parameter but the MCMC

methods enable us to overcome this problem (Wienke, 2003) .

The Gibbs sampling is one of the algorithms that have been created in order to obtain
Markov chains with the desired stationary distribution. Gibbs sampling is used to fit frailty
models on clustered failure time data with right censored observations, by sampling
iteratively from the full conditional distribution of the parameters in the model (Nasejje,
2015). The basic idea behind the Gibbs sampling is to successively sample from the
conditional distribution of each random node, given all the others in the model (Wienke,
2003).

2.5 Survival Analysis Parametric Methods

A parametric survival model is a well-recognized statistical technique for exploring the
relationship between the survival of a person, a parametric distribution and several
explanatory variables. It allows us to estimate the parameters of the distribution. Parametric
survival analysis models typically require a non-negative distribution and the distributions
that work well for survival data include the exponential, Weibull, gamma and lognormal
distributions. There are two parametric methods which are commonly used in survival
analysis which include the parametric proportional hazards model and the Accelerated
failure time (AFT) model.

(a) Parametric Proportional hazards model
Parametric proportional hazard models are used to describe proportional hazards models
in which the hazard function is specified i.e. when proportional hazard models are
formulated with assuming a probability distribution for survival times, this leads to
parametric models (Khosa, 2019). It was advocated by (Gong & Fang, 2013)to use
parametric proportional hazard models for the analysis of interval censored data. Let
consider the analysis of survival data when one is to assume a parametric form of
distribution of survival time. Let T denote a continuous non-negative random variable
representing survival time with p.d.f. (probability density function) f(t)and c.d.f.

(cumulative density function) F(t) =Pr(T < t).
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Let A(t) = fot A(uw)du denote the cumulative hazard. Recall that S(t) = exp{—A(t)}. Any

distribution defined for te[0, ) can serve as a survival distribution. Some of the
distributions that are commonly used include Exponential, Weibull, Geompertz-Makeham

and Gamma.

All parametric models can be fit by maximizing the appropriate likelihood function. Let
data consist of pairs (t;, d;) where;
t; is the survival or censoring time and d; is a death indicator

The likelihood function under general non-informative censoring has the form;
L(8) = [Ty At 48 (¢:1x) 3.8
And in general must be maximized numerically.
(b) Accelerated failure time (AFT) model

The Acceleration failure time model is a parametric model which was introduced by (Cox,
1972) and it is known as accelerated failure time model because of the term “failure” which
indicates the event of interest which could be death, disease etc. The term “Accelerated”
indicates the responsible factor for which the rate of failure is increased and that factor is
referred to as the “Acceleration factor” (Saikia & Barman, 2017).

If the appropriate parametric form of AFT model is used then it offers a potential statistical
approach in case of survival data which is based upon the survival curve rather than the
hazard function. In AFT model, the dependent variable is log of the survival time T, and
the assumption is that the effect of covariates act multiplicatively (proportionally) with

respect to the survival time.

A semi-parametric model is a statistical model that has parametric and non-parametric
components. Survival semi-parametric methods are called semi-parametric because while

the hazard function is estimated non-parametrically, the functional form of the covariates
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is parametric and this is a strength because the non-parametric estimate of the hazard
function offers much greater flexibility than most parametric approaches. Semi-parametric
models have few assumptions which makes them a popular choice, however, parametric
model provide greater efficiency in such a way that only a few parameters are estimated
and this model is comparatively easy to interpret. It also provides the ability to extrapolate
beyond the range of the data. Parametric models do have challenges which include

choosing a reasonable distribution to run the models.

The standard Cox proportional hazards model is applicable when time-to-event data are
independent and our Study is going to use DHS data which is obtained from a cluster survey
and assumed to be correlated as such the statistical assumption of interdependence is
violated if the standard Cox proportional hazard model is used as such we are going to use
the Cox-frailty model which accounts for both observed and unobserved effects. It is also
important to consider the possibility that some children are frailer than others i.e. some
children are more likely to experience the hazard than others as such there is need to use
the Cox-frailty model that captures total effects of all factors that influence the child's risk

of death that are not included in the standard Cox-proportional hazard model.
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CHAPTER 3

RESEARCH METHODOLOGY

In this chapter the first section describes the data sources and the second section describes
the methods that will be used for data analysis.

3.1 Data Sources

The data for this study is from the 2015-16 Malawi Demographic Healthy Survey (2015-
16 MDHS) which was implemented by the National Statistical Office from 19 October
2015 to 17 February 2016. The funding for the 2015-16 MDHS was provided by the
government of Malawi, the United States Agency for International Development (USAID),
the United Nations Children’s Fund (UNICEF), the Malawi National AIDS Commission
(NAC), the United Nations Population Fund (UNFPA), UN WOMEN, Irish Aid, and the
World Bank (National Statistical Office (NSO), 2017). The DHS program is a USAID
project to assist developing countries worldwide in collecting and monitoring data to
evaluate the population, health and nutrition programs. All official raw data and reports
from all countries where DHS is application can be accessed through
https://www.dhsprogram.com. The primary objective of the 2015-16 MDHS was to

provide estimates of basic demographic and health indicators.

The survey was based on a nationally representative sample which provided estimates at
the national and regional levels and for urban and rural areas with key indicator estimates
at the district level. The survey included 26,361 households, 24,562 female respondents,
and 7,478 male respondents. The 2015-16 MDHS included household and respondent
characteristics, fertility and family planning, infant and child health and mortality, maternal

health and maternal and adult mortality, child and adult nutrition, malaria, HIV/AIDS,
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domestic violence, orphans, and vulnerable children. The sampling frame used for the
2015-16 MDHS is the frame of the Malawi Population and Housing Census (MPHC),
conducted in Malawi in 2008, and provided by the Malawi National Statistical Office
(NSO). The 2015-16 MDHS sample was stratified and selected in two stages. Each district
was stratified into urban and rural areas; this yielded 56 sampling strata. Samples of
standard enumeration areas (SEAs) were selected independently in each stratum in two

stages.

Infant and child mortality data was collected as part of a retrospective birth history in
which female respondents listed the children they have born, child's date of birth,
survivorship status, current age or age at death which they used to indirectly and directly

estimate infant mortality rate.

Table 1: Selected Variables

Variables (DHS Codes) Label

B7 Age at Death (Months, Imputed)

B5 Child is alive

B3 Date of birth (CMC**)

V008 Date of interview(CMC)

V106 Mother Highest education level

V190 Socio-Economic  Status of the
Family

B4 Sex of child

BO Type of birth

V113 Source of drinking water

V151 Sex of household head

M15 Place of delivery

V102 Area of residence

M18 Size of child at birth

V130 Religion

V013 Mothers’ age group
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3.1.2 Measurements of study variables

e Qutcome variable
In this study the dependent variable was infant mortality was defined as the death of a child
under the age of 1 year and this variable was measured as a binary response: yes or no. All
births that occurred within 5 years before the date of interview were included. There was
no specific variable for the survival time in the dataset as such the children survival times,
in years, who were alive were calculated by subtracting the date of birth (CMC- century
month code) from the date of interview (CMC) and then dividing by 12 to get survival time

in months as shown below;

Survival time for alive children

__date of Interview(V008) — date of birth(B3)
B 12

The survival time for children who are dead was simply the age at death divided by 12;

Age at death(B7)
12

Survival time for dead children =

e Explanatory variables
The explanatory variables were grouped into four categories which are social demographic,

social economic, biological and environmental factors.

The social-demographic factors include Mothers’ age group, Religion and Sex of
household head (SHH). Religion had the following categories; Catholic, Anglican,
Muslim, CCAP, other Christian and no religion. Sex of household head had female and
male categories. The mother’s age group, in years, at birth of the child was calculated as
the difference between the child's birth date and mothers’ birthdate which was then
categorized into 15-19, 20-24, 25-29, 30-34, 35-39, 40-44 and 45-49 years.

The social economic factors include mother's highest education and economic status of the

family. Mother's highest education was categorized into no education, primary, secondary,
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and higher (tertiary). Economic status of the family had the following categories; poorest,
poorer, average, richer and richest. The DHS program calculates the composite score
wealth index which determines the family economic status by combining ownership of
several household assets (televisions or bicycles), construction materials for the household
in which participants live, as well as their accessibility to water and sanitation services
(Gondwe et al., 2021).

The biological factors include sex of child, type of birth and size of child at birth. Type of
birth was categorized into single and multiple whilst the size of child at birth covariate was

categorized into very small, smaller than average, average and larger than average.

The environmental factors include source of drinking water, area of residence and place of
delivery. Area of residence was categorized into rural and urban whilst place of delivery
had 4 categories which were respondent’'s home, Other home, Government hospital,
Government health center, Government health post / outreach, Other public sector, Private
hospital / clinic, Cham/mission hospital, Cham/mission health center and BLM(Banja la
Mtsogolo). Globally, nearly a billion people still lack access to improved sources of
drinking water and unimproved water and sanitation are major causes of diarrhea which
globally accounts for approximately 1.4 million child deaths each year (Ezeh et al., 2014).
As such it is important to look at this environmental factor which is source of drinking
water. For this covariate respondents were asked their main source of drinking water for
members of their household was asked and the responses were categorized into twelve
categories which were Piped into dwelling, Piped to yard/plot, Piped to neighbor, Public
tap/standpipe, Tube well or borehole, Protected well, Unprotected well, Protected spring,
Unprotected spring, River/dam/lake/ponds/stream/canal, Rainwater and Not a dejure

resident.
3.2. Methods of Analysis

Data analysis was conducted in Stata 14 at univariate and multivariable levels. Kaplan-

Meier and log-rank tests were used for the univariate analysis and since the Cox-frailty
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model is a modification of the Cox proportional hazard model, both models were fitted for

the multivariable analysis. The significance level was taken as a p value <0.05.

Let ¢ represent the time to death (survival time) of a child under 1year of age (age of the
child) in the data. Assuming that the survival times or are identically and independently

distributed, the Cox Proportional Hazard model with covariates was fitted as follows;

A(t|Z) = 2o(t)exp(B, » mothers'age group + B, * religion + B; * SHH + f3,
* size at birth + fs * Area of residence + [, * sex of child + 3,
x type of birth + g * mothers'highest education + [,
* family economic status + 1o * place of delivery + 11

* source of drinking water

For the Cox frailty model which is an extension of the Cox proportional hazard model,
family and community effects on infant mortality will be considered. The Frailty model
has an unobserved multiplicative effect on the hazard rate for all individuals in the same
group. This is why this model was used in this study since infants in the same family or
community share the same nuisance (frailty) factor. Some infant deaths occur more in
certain families than others and this variation could be due to effects of biological, genetic,
parental competence, and other family specific factors that have not been accounted for in
the Cox proportional hazard model (Bolstad & Manda, 2001). And also, some communities
experience more infant deaths than others which could be due to different cultural practices

and customs as such it is important to study these random effects in infant mortality.

Let ;. be the time child k, in family or community i, leaves the study, either by death or by
surviving to the end of the study. Let X;;, denote the design vector for child k, in family or
community i, for the fixed effect explanatory variables and let S be the vector of fixed
effect coefficient. Then the hazard function for child k, in family/community i, will be
given by;

Rk (t1 %3k, bir) =bygcho () exp(x i B)
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Whereb; is the random effects which will be interpreted as relative risk since it operates

multiplicatively on the hazard function (Bolstad & Manda, 2001).

3.2.1 Model Diagnostics
Since the Cox proportional hazard model is semi-parametric and that it does not have an
implied error, model checking is commonly implied checking whether the proportional
hazards assumption is met. Testing the time dependent covariates is equivalent to testing
for a non-zero slope in a generalized linear regression of the scaled Schoenfeld residuals
on functions of time. A non-zero slope is an indication of a violation of the proportional

hazard assumption.
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CHAPTER 4

RESULTS

In this chapter, the results of the study have been presented and discussed with reference

to the aim of the study.

This study aimed to identify factors associated with infant mortality in Malawi and to
examine the effects of unobserved heterogeneity (frailty) on infant mortality both at family
and community level. This chapter provides a description of the results that were found
after analyzing the 2015-16 MDHS data.

4.1 Description of Study Population

This section gives a brief description of the study population based on the factors that were
studied. A total number of 4232 infants was considered for this study and out of these, 721
(17.04%) died before their first birthday. The mean age in months for infants who died is
2.25 months which indicate that a lot of infants die in their early days afterbirth as presented
in table 2. As can be seen from tables 3,4 and 5, out of the 721 dead infants, 405 (56.17%)
were males and 316 (48.83%) were females, which clearly indicates that more male infants
died than females. On the family economic status infants born from poorest families had
the highest death percentage of 24.41 and 85.25 percent infant that died were from the rural
area. The table also showed that the population had more households that are poorer and
poorest. The table 4 also showed that a lot of households used boreholes as a source of
drinking water, 2535 households out of the 4232 use boreholes as a source of drinking

water. A high number of mothers’ education level, 2798, was primary.
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Table 2: Descriptive Statistics for age in months

status N Sd(months) IQR(months) Median(months)
alive 3511 3.64 3to9 6.00
dead 721 3.79 0to3 0.00
total 4232 3.96 2t09 5.00

Table 3: Distribution of deaths by survival determinants

COVARIATE Number of deaths | Percentage (%)
Sex of child

male 405 56.17
female 316 48.83
Family economic

status 176 2441
Poorest 174 24.13
Poorer 127 17.61
Middle 124 17.20
Richer 120 16.64
richest

Place of delivery

Respondents home 47 6.52
Other home 19 2.64
Govt hospital 246 34.12
Govt health center 306 42.44
Govt outreach 7 0.97
Other pub sector 0 0
Private hospital 20 2.77
Cham/mission hospital | 35 4.85
Cham/mission  health | 32 4.44
center 9 1.25
Other

Religion

Catholic 702 17.48
CCAP 549 10.12
Anglican 187 2.77
Seventh day Adventist | 280 8.32
Other Christian 1919 48.27
Muslim 573 12.76
Other 4 0.28
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Table 4: Cont of distribution of deaths by survival determinants

Sex of household head

Male 2354 74.48
female 978 25.52
Source of drinking water

Piped into dwelling 95 291
Piped to yard 264 5.69
Piped to neighbor 148 2.64
Public tap 413 8.04
Tube well/borehore 2535 62.69
Protected well 125 291
Unprotected well 333 8.46
Unprotected spring 12 1.66
River/dam 200 4.02
Rainwater 3 0.28
other 0 0.00
Not a dejure resident 38 0.42
Mothers’ highest education

No education(ref) 495 12.21
Primary 2798 69.21
Secondary 858 17.48
higher 81 111
Mothers’ age group

15-19 657 11.37
20-24 1364 30.64
25-29 877 19.97
30-34 679 16.64
35-39 436 12.34
40-44 164 5.83
45-49 55 3.19
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Table 5: Cont of distribution of deaths by survival determinants

Area of residence

Urban 690 14.15
Rural 3542 85.85
Size of child

Very large 329 7.77
Larger than average 1030 20.80
Average 2108 42.72
Smaller than average 523 16.78
Very small 184 7.63
Don’t know 58 4.30
Type of birth

Single birth 609 84.47
1%t of multiple 54 7.49
2" of multiple 58 8.04

4.2 Life Table Results

The life table summarized the mortality trend among infants and as can be seen from the
table 6, there was a high number of deaths in infants between the ages of 0 and 1 month
old, there were 458 deaths. Which is in agreement with the research that a lot of children
die in their first month of life (neonatal period). Generally, as the months increase the

number of deaths decrease which implies that age of child plays a role in infant mortality.

Table 6: summary of survival probabilities for infants

Interval Beginning | deaths lost survival Confidence
/Months total no. of interval
children
0 1 4232 458 128 0.8901 (0.8802, 0.8992)
1 2 3646 50 274 0.8774 (0.8671, 0.8871)
2 3 3322 21 299 0.8716 (0.8610, 0.8815)
3 4 3002 17 277 0.8664 (0.8556, 0.8765)
4 5 2708 16 273 0.8611 (0.8500, 0.8714)
5 6 2419 14 315 0.8557 (0.8443, 0.8664)
6 7 2090 23 275 0.8456 (0.8336, 0.8569)
7 8 1792 13 270 0.8390 (0.8265, 0.8507)
8 9 1509 21 256 0.8263 (0.8127, 0.8389)
9 10 1232 27 279 0.8058 (0.7905, 0.8202)
10 11 926 9 258 0.7967 (0.7804,0.8120)
11 12 659 12 297 0.7780 (0.7587, 0.7960)
12 13 350 40 310 0.6184 (0.5700, 0.6630)
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4.3 Kaplan Meier Results

In this section the research used a non-parametric method, the Kaplan Meier, which is
mainly graphical, to describe how the risk of death for the children under 1 year is
distributed across the strata of some of the chosen covariates.

Only a few Kaplan Meier curves are presented in the thesis and the others are presented in
appendix B. As can be seen in figures 2, 3 and 4, the curve shows that male infants had a
high probability of death compared to female infants. Infants born in poorer families had a
high probability of death compared to their counterparts and infants born in families headed
by males had a higher probability of survival than infants born in families headed by

females.

Kaplan-Meier survival estimates
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Figure 2: Survival estimates by sex of child
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Kaplan-Meier survival estimates
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4.4 Log Rank Test Results
The log rank test is a popular test used to test the null hypothesis of no difference in survival
between two or more independent groups. In this study, the test was used to compare the

survival experience between/among groups of the variables at 5% significance level.

The results showed that size of child at birth was found to have a significant association
with infant mortality with P-value = 0.003and chi2=18.20. The other covariates SHH, type
of birth, area of residence and mothers’ age group were also found to have a statistical
significant association with infant mortality with P-value=0.014 and chi2=6.01, P-
value<0.001 and chi2=21.68,P-value=0.002 and chi2=9.25 and P-value<0.001 and chi2=
47.00 respectively. The rest of the covariates were found to have no significant influence
on infant mortality since the P-values were greater than 0.05 which implied that there was
no statistically significant evidence that the survival distributions were not the same. Table

7 gives a summary of the log rank test results.

Table 7: Log Rank Test Results

COVARIATE Chi2 P-VALUE
Sex of child 1.17 0.279
Family Economic Status 5.12 0.275
Size of child 18.20 0.003
Religion 10.98 0.140
Type of birth 21.68 <0.001
Source of drinking water 10.55 0.568
Mothers’ Age group 47.00 <0.001
Mothers’ highest education | 7.07 0.069
Place of delivery 16.39 0.059
Sex of household head 6.05 0.014
Area of residence 9.25 0.002
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4.5. Cox Proportional Hazard Model

The Cox hazard model tests the hypothesis that hazard ratio is equal to 1 (HR=1), meaning
that there is no difference in the relative risk of death between the group of interest and the
reference group.If the hazard ratio is > 1, this indicates that the treatment group has a
shorter survival than the control referenced group, and if it is < 1, it indicates that the group

of interest is less likely to have a shorter time to the event than the reference group.

The results for the Cox proportional hazard analysis are presented in tables 8, 9 and 10.
The findings of the study showed that the overall model was highly significant with a p-
value of 0.000, indicating that at least one of the covariates exerts effects on infant mortality

in Malawi.

According to the results, infants who were the second multiple babies to be born and first
multiple babies had a higher risk of dying before reaching the age of one than children who
were born single. This covariate, type of birth, was highly significant with p-values (95%
Cl) of <0.001(1.639, 5.700) and 0.049 (1.004, 4.326) for 2" and 1% multiple babies
subcategories respectively. It was also found that sex of household head was significant in
infant mortality. The results indicated that children born in households whose head was a
female had a higher risk of dying before reaching the age of 1 year than children born in
households with a male head, P-value=0.026, HR=1.37 and 95%CI= (1.037, 1.803).

For place of delivery covariate, private hospital subcategory was significant with P-
value=0.020 and hazard ratio HR=2.97 (95%CI1=1.175, 7.524). This indicated that children
who are born in private hospitals had a higher risk of dying 2.97 times more than children
born in respondent’s home before reaching the age of 1 year, whereas the hazard ratios for

other groups were not statistically significant.

It was also found that infants born from families whose religion is other had a higher risk
of dying compared to infants born from catholic families with P-value=0.024, HR=10.95
and 95%ClI =(1.374, 87.240), whereas the hazard ratios for other groups were not
statistically significant.
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As can be observed from the results, two groups were highly significant from the covariate
mothers’ age group with p-values of <0.001. Age group 40-44 and 45-49 had hazard ratios
of 3.86, 95%CI = (2.148, 6.930) and 5.22, 95%CI= (2.630, 10.337) respectively, which
indicated that infants whose mother’s age group was 40-44 and 45-49 had a higher risk of
death compared to infants whose mother’s age group was 15-20. It was also found that the
confidence interval for the 45-49 age category was wide, this could be because the sample

size used for the analysis was small.

As can be observed from the results table, five groups from type of drinking water covariate
were significant. It was found that infants born in families whose source of drinking water
was piped to neighbor, tube well/bore hole, protected well, unprotected well and river/dam
had a lower risk of death compared to infants born in families whose source of drinking

water was piped into dwelling.

Sex of child, size of child, mother’s education, family economic status and area of
residence were not statistically significant. The coefficient for female group was positive
which indicated that females had a higher hazard rate and shorter survival time. For the
economic status and area of residence, all groups had positive coefficients which indicated
that the variables of interest had higher hazard rates and shorter survival time compared to
the reference variables. The size of child covariate groups had both negative and positive
coefficients. Larger than average and average infants had negative coefficients which
indicated that they had lower risk of dying and had longer survival time. Whilst smaller
than average and very small infants had positive coefficients which indicated that they had
higher hazard rates. For mother’s education, secondary and higher groups had negative
coefficients which indicated that infants born from mothers of the two groups had a lower

risk of death whilst infants born from primary school mothers had a higher risk of death.
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Table 8: COX PH MODEL RESULTS

Covariate Coefficient | Hazard ratio (95% | Std Error | P-value

conf. Interval)

Sex of child

male(ref) 1.000

female 0.120 1.13(0.881 1.443) | 1.14 0.339
Family  economic

status 1.000

Poorest (ref) 0.091 1.13(0.764, 1.569) | 0.21 0.620
Poorer 0.196 1.20(0.839, 1.764) | 0.23 0.301
Middle -0.115 0.89(0.585, 1.357) | 0.19 0.593
Richer -0.085 0.90(0.534, 1.579) | 0.25 0.759
richest

Place of delivery

Respondents 1.000

home(ref) 0.459 1.41(0.521, 4.809) | 0.79 0.417
Other home 0.214 1.11(0.604, 2.537) | 0.40 0.560
Govt hospital 0.364 1.32(0.722, 2.871) | 0.46 0.301
Govt health center 0.660 1.71(0.584, 6.415) | 1.04 0.280
Govt outreach 1.089 2.90(1.175, 7.524) | 1.36 0.021
Private hospital -0.087 0.81(0.377, 2.227) | 0.36 0.847
Cham/mission 0.702 1.76(0.874, 4.653) | 0.74 0.100
hospital 0.036 1.03(0. .276 , 3.887) | 0.69 0.958

Cham/mission health
center
Other
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Table 9:CONT OF COX PH MODEL RESULTS

Religion

Catholic(ref) 1.000

CCAP -0.181 0.85(0. 519, 1.343) 0.21 0.457
Anglican -0.558 0.59(0.251, 1.300) 0.25 0.183
Seventh day | -0.009 1.01(0. .558 , 1.757) 0.29 0.974
Adventist -0.024 0.99(0. 689, 1.384) 0.18 0.895
Other Christian -0.173 0.85(0 .533, 1.327) 0.20 0.457
Muslim 2.393 10.22(1.374 ,87.240) 10.84 0.024
Other

Type of birth

Single(ref) 1.00

1%t of Multiple 0.734 2.27(1.004 , 4.326) 0.84 0.049
2" of multiple 1.117 3.26(1.639, 5.700) 1.03 <0.001
Source of drinking

water 1.00

Piped into dwelling | -0.332 0.64(0.281, 1.829) 0.30 0.487
Piped to yard -1.654 0.17(0.046 , 0.795) 0.12 0.023
Piped to neighbor | -0.949 0.33(0.145, 1.029) 0.16 0.057
Public tap -1.058 0.30(0.135 , 0.892) 0.14 0.028
Tube well/borehore | -1.426 0.22(0.067 , 0.856) 0.14 0.028
Protected well -1.061 0.29(0.124 , 0.964) 0.15 0.042
Unprotected well -0.971 0.35(0.111 , 1.297) 0.22 0.122
Unprotected spring | -1.303 0.23(0.088 , 0.829) 0.13 0.022
River/dam -1.738 0.16(0.019 , 1.620) 0.18 0.125
Not a dejure

resident

Mothers’ highest

education 1.00

No education(ref) 0.157 1.17(0.790, 1.729) 0.23 0.443
Primary -0.057 0.93(0 .559, 1.594) 0.25 0.830
Secondary -1.589 1.85(0.025, 1.604) 0.20 0.131
higher
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Table 10 :CONT OF COX PH MODEL RESULTS

Sex of household head

Male(ref) 1.00

Female 0.313 1.37(1.037 , 1.803) 0.19 0.026
Mothers’ age group

15-19(ref) 1.00

20-24 0.349 1.36(0.910, 2.204) 0.31 0.122
25-29 0.307 1.31(0.842 , 2.193) 0.32 0.209
30-34 0.300 1.31(0.822 , 2.217) 0.33 0.235
35-39 0.427 1.40(0.900, 2.611) 0.38 0.116
40-44 1.350 3.49(2.148, 6.930) 1.04 <0.001
45-49 1.652 4.63(2.630, 10.337) 1.60 <0.001
Area of residence

Urban(ref) 1.00

Rural 0.455 1.60(0.923 , 2.686) 0.43 0.095
Size of child

Very large(ref) 1.00

Larger than average -0.115 0.89(0.527 , 1.504) 0.24 0.667
Average -0.030 0.97(0.594 , 1.582) 0.24 0.904
Smaller than average 0.532 1.70(0.985 , 2.941) 0.48 0.056
Very small 0.009 1.01(0.497 , 2.049) 0.37 0.979
Don’t know 0.900 2.46(0.815 , 7.413) 1.39 0.110

4.6 Multivariable Model Development

Likelihood ratio tests were used for the multivariable model development. The covariates
which were significant in the Cox proportional hazard model are the ones which were
included in the final model. Firstly, type of birth was adjusted in the final model by fitting
a Cox proportional hazard model with just one variable and then fitting another model with
the five variables from the final model to perform a likelihood ratio test. After adjustment
for type of birth, the null hypothesis, the smaller model provides as good a fit for the data
as the larger model, was rejected since the P-value was 0.0002 which was less than 0.05
and this indicated that including type of birth creates a statistically significant improvement

in the fit of the final model. Two factors were then adjusted, type of birth and place of

delivery.
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After adjustment for type of birth and place of delivery, the P-value=0.0005 was also less
than 0.05 as such the null hypothesis was rejected and conclude that the two covariates
create a statistically significant improvement in the fit of the final model. However, after
adjusting for type of birth, place of delivery and mothers’ age group the P-value=0.436 was
greater than 0.05 as such we failed to reject the null hypothesis and conclude that mothers’

age group does not create an improvement to the fit of the model.

Finally, type of birth, place of delivery, sex of household head and source of drinking water
covariates were adjusted for and the P-value was less than 0.001 as such we rejected the
null hypothesis which indicated that the covariates create an improvement to the fit of the
final model. The models were compared by displaying betas and summary statistics for
each model which are presented in table 11. The BIC is Schwarz’ Bayesian Information
Criterion, which is a function of the log-likelihood. Smaller values indicate a better fit and
as can be seen from table 4.6 model 2, with covariates type of birth and place of delivery

had the lowest BIC value.

4.6.1 Model Diagnostics

The Schoenfeld residuals goodness of fit test was used to check the Cox proportional
hazard model fitted in section 4.4. The null hypothesis for this test was that there are no
violations of the proportional hazards assumption among the variables in the model. The
results in table 12 for the global p-value for the test was found to be 0.571 and all the
covariates had p-values greater than 0.05, as such the study failed to reject the null
hypothesis. The results indicated that all the explanatory variables are constant over time
since they are not statistically significant, hence they were no violations of the proportional

hazards assumption.

Graphs of the scaled Schoenfeld residuals were then obtained for each covariate to test
proportionality of each predictor. As discussed in chapter 3, a non-zero slope indicates a
violation of the proportional hazard assumption. As can be seen from figures 5, 6, and 7,

there was a zero slope on the graphs as such we concluded that there was no violation of
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the proportional hazards assumption for religion, size of child and type of birth predictors
respectively. The scaled Schoenfeld residuals plots for the other variables presented in
appendix B also had a zero slope which indicated that they did not violate the proportional

hazards assumption.

Table 11:Test of proportional-hazards assumption

Covariate rho Chi2 df p-value
Sex of child 0.040 0.43 1 0.512
Family economic | 0.097 2.39 1 0.122
status

Place of delivery 0.007 0.01 1 0.915
religion 0.008 0.02 1 0.896
Mother’s -0.115 2.97 1 0.085
education

Type of birth 0.047 0.58 1 0.447
Source of drinking | -0.018 0.07 1 0.785
water

Sex of household | -0.029 0.22 1 0.641
head

Mother’s age | 0.033 0.33 0.567
group

Area of residence | 0.096 2.34 1 0.126
Size of child at | -0.043 0.52 1 0.473
birth

Global test 9.55 11 0.571
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Table 12: Coefficients (Log Of Hazard Ratios) And Summary Statistics

Model 2 Model 3 Model 4 Model 5 Final model

b b b b b
Type of birth
single 0 0 0 0 0
1t of multiple 0.845 0.894 0.778 0.782 0.835
2" of multiple 1.215 1.303 1.168 1.160 1.255
Place of delivery
Respondents home 0 0 0 0 0
Other home 0.410 0.281 0.430 0.469 0.303
Govt hospital -0.1284 -0.035 -0.118 -0.088 -0.009
Govt health center 0.168 0.239 0.170 0.209 0.272
Govt outreach 0.328 0.475 0.416 0.476 0.609
Other pub sector -40.026 -39.781 -36.073 -34.959 -33.729
Private hospital 0.909 1.015 0.864 0.898 1.015
Cham/mission hospital | -0.316 -0.264 -0.279 -0.248 -0.214
Cham/mission health
center 0.413 0.521 0.435 0.489 0.573
other -0.166 -0.079 -0.134 -0.065 -0.0015
Mothers’ age groupl5-
19 0 0
20-24 0.281 0.287
25-29 0.215 0.208
30-34 0.239 0.231
35-39 0.322 0.295
40-44 1.270 1.234
45-49 1.597 1.523
Source of drinking
water
Piped into dwelling 0 0 0
Piped to yard -0.011 -0.018 -0.06
Piped to neighbor -1.253 -1.268 -1.255
Public tap -0.264 -0.282 -0.34
Tubewell/bore hole -0.16 -0.192 -0.273
Protected well -0.640 -0.651 -0.654
Unprotected well -0.102 -0.145 -0.243
Unprotected spring -36.419 -35.491 -34.628
River/dam 0.049 -0.036 -0.041
rainwater -0.424 -0.430 -0.537
Cart with small tank -36.237 -35.152 -35.237
other -36.239 -35.507 -34.627
Not a dejure resident -0.757 -0.800 -0.751
Sex of household head
female 0 0
male 0.333 0.282
Chi2 29.11681** | 63.08413*** 39.94171* | 45.66825** | 76.89593***
BIC 3942.396 3957.637 4038.19 4040.664 4058.645
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Figure 5: Religion Schoenfeld residuals plot
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Figure 6: Size of child Schoenfeld residuals plot
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Figure 7: Type of birth Schoenfeld residuals plot

4.7. Cox Frailty Model

Two models were fitted in this section one was the Cox frailty model with community
effects as the frailty term and a Cox frailty model with household effects as the frailty
term.296 households and 845 communities (clusters) were considered in this study.
Results for the household effects Cox frailty model are presented in tables 13, 14 and 15.
By using the likelihood ratio test with a null hypothesis that the variance of the frailty term
is zero (8 = 0), the chi-square test statistic (y = 2.90) with a p-value of 0.04 at 0.05 level
of significance, there was enough evidence to show the existence of unobserved
heterogeneity at household level which suggests that some households were associated to
a higher risk of children dying before reaching the age of one year than others. However,

for the community effects, the model did not converge.

The factors that were strongly associated with infant mortality after controlling for
household effects were identified by looking at the p-values and the 95% confidence
intervals. The factors whose p-values were greater than 0.05 level of significance and
95%CI spanned a 1 implied that the factors were not significant and those with p-
value<0.05 and 95%CI did not span a 1 implied significance. The children born in

households headed by women were at a high risk of death before reaching the age of one
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year than those born in households where the man is the head, (P-value=0.027, HR=1.37,
95%CI =1.036, 1.803). The other factors which were found to be associated with infant
mortality after controlling for household effects included place of delivery, religion, type
of birth, source of drinking water, mothers’ age group and size of child at birth.

Table 13: Cox Frailty Model Results
Family /household effects

covariate Hazard ratio (95% confidence | Std Error | P-value
interval)

Sex of child

male(ref)

female 1.16(0.906, 1.486) 0.14 0.238

Family economic status

Poorest (ref)

Poorer 1.000
Middle 1.14(0.792, 1.636) 0.21 0.483
Richer 1.20(0.824, 1.752) 0.23 0.339
richest 0.88(0.577, 1.352) 0.19 0.569
0.89(0.516, 1.547) 0.25 0.689
Place of delivery
Respondents home(ref) 1.000
Other home 1.52(0.494, 4.670) 0.87 0.466
Govt hospital 1.12(0.543, 2.305) 0.41 0.760
Govt health center 1.35(0.067, 2.725) 0.48 0.390
Govt outreach 1.76(0.524, 5.936) 1.09 0.359
Private hospital 3.12(1.225, 7.954) 1.49 0.017
Cham/mission hospital 0.81(0.330, 1.980) 0.37 0.643
Cham/mission health center | 1.81(0.077, 4.201) 0.78 0.168
other 1.00(0.265, 3.796) 0.68 0.996
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Table 14: Cont Of Cox Frailty Model Results

Religion

Catholic(ref)

CCAP 0.85(0.526, 1.373) 0.21 0.508
Anglican 0.58(0.253, 1.323) 0.24 0.195
Seventh day Adventist 1.00(0.559, 1.768) 0.29 0.985
Other Christian 0.98(0.686, 1.389) 0.18 0.894
Muslim 0.84(0.529, 1.327) 0.20 0.452
other 1.00(1.192, 83.778) 10.84 0.034
Type of birth

Single(ref)

1%t of Multiple 2.13(1.121, 4.844) 0.81 0.023
2" of multiple 3.14(1.765, 6.238) 1.02 <0.001
Source of drinking water

Piped into dwelling(ref) 1.00

Piped to yard 0.63(0.247, 1.618) 0.30 0.430
Piped to neighbor 0.16(0.038, 0.675) 0.12 0.013
Public tap 0.31(0.116, 0.831) 0.16 0.020
Tube well/borehore 0.28(0.107, 0.718) 0.13 0.008
Protected well 0.20(0. 0547, 0.701) 0.13 0.012
Unprotected well 0.27(0.097, 0.770) 0.15 0.014
Unprotected spring 0.33(0.094, 1.156) 0.21 0.111
River/dam 0.21(0.0699, 0.669) 0.13 0.008
Not a dejure resident 0.16(0.016, 1.453) 0.18 0.103
Mothers’ highest

education 1.00

No education(ref) 1.18(0. 787, 1.730) 0.24 0.442
Primary 0.93(0. 545, 1.563) 0.25 0.766
Secondary 0.20(0 .022, 1.452) 0.21 0.108
higher
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Table 15: Cont Of Cox Frailty Model Results

Sex of household head

1.00

Male(ref) 1.37(1.033, 1.807) 0.19 0.028
female

Mothers’ age group

15-19(ref) 1.00

20-24 1.39(0 .852, 2.074) 0.32 0.209
25-29 1.37(0. 808, 2.116) 0.34 0.274
30-34 1.34(0.782, 2.121) 0.33 0.320
35-39 1.55(0.821, 2.383) 0.43 0.216
40-44 3.80(1.868, 6.075) 1.16 <0.001
45-49 5.21(2.279, 9.171) 1.87 <0.001
Area of residence

Urban(ref) 1.00

rural 1.60(0. 981, 2.904) 0.44 0.058
Size of child

Very large(ref) 1.00

Larger than average 0.88(0.517, 1.493) 0.209 0.633
Average 0.98(0.593, 1.598) 0.24 0.918
Smaller than average 1.78(1.00, 3.048) 0.50 0.046
Very small 1.01(0.484, 2.044) 0.37 0.991
Don’t know 2.27(0.745, 7.038) 1.30 0.148
Frailty Variance 0.17 0.12

4.8 Parametric Frailty Models

Parametric frailty models were fit to select the best fit model. Two parametric frailty
models werefit for both the household and community effects using two different
distributions making a total of four models. The first parametric frailty models to be fitted
were the Weibull distribution model to assess if there exists unobserved heterogeneity at

household and community level. The results are presented in tables 16, 17 and 18. The
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other models were fit using the log normal distribution and the results are presented in
appendix C. For the Weibull/gamma models, the results indicated that there were no
unobserved heterogeneity at household level with P-value=0.056 and 6=2.54 and no
unobserved heterogeneity at community level with P-value=1.000 and 8=0.00. Whilst for
the log normal distribution models, it was found that there were no unobserved
heterogeneity at household level with P-value=0.090 and 8 = 1.80 and also that there were

no unobserved heterogeneity at community level with P-value=0.499 and 6 = 2.6e-06.
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Table 16: Parametric Frailty Models

Household effects (weibull) Community effects (weibull
COVARIATE Hazard SE P-value | Hazard ratio(95% | SE P-value
ratio(95% confidence interval)
confidence
interval)
Sex of child
male(ref) 1.000
female 1.14(0.891 , | 0.146 0.292 1.139(0.891, 1.469) 0.1143 0.300
1.467)
Family economic
status
Poorest (ref)
Poorer 1.096(0.762, 0.203 0.622 1.091(0.762 ,1.563) 0.200 0.632
Middle 1.575) 0.232 0.339 1.210(0.835,1.755) 0.229 0.313
Richer 1.202(0.824, 0.187 0.492 0.868(0.579,1.322) 0.186 0.511
richest 1.754) 0.252 0.717 0.916(0.534, 1.568) 0.251 0.750
0.861(0.563,
1.319)
0.904(0.523,
1.561)
Place of delivery
Respondents
home(ref) 1.000
Other home 1.662(0.536, 0.959 0.397 1.543(0.509, 4.676) 0.91 0.442
Govt hospital 5.153) 0.436 0.651 1.174(0.575, 2.398) 0.46 0.659
Govt health center 1.182(0.573, 0.511 0.312 1.405(0.706, 2.795) 0.51 0.332
Govt outreach 2.439) 1.190 0.292 1.865(0.565, 6.166) 1.21 0.307
Private hospital 1.434(0.713, 1.666 0.009 3.229(1.288, 8.098) 1.43 0.012
Cham/mission hospital | 2.884) 0.392 0.739 0.865(0.35, 2.096) 0.42 0.749
Cham/mission 1.921(0.571,
healthcenter 6.470) 0.860 0.110 1.139(0.843, 4.462) 0.87 0.119
other 3.475(1.358 ,
8.894) 0.669 0.979 0.955(0.265, 3.732) 0.70 0.995
0.859(0.351,
2.102)
1.992(0.855,
4.643)
0.988(0.258,
3.737)
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Table 17: CONT OF PARAMETRIC FRAILTY MODELS

Religion

Catholic(ref) 1.000

CCAP 0.854(0.528, 1.382) 0.209 0.521 0.854(0.531, 1.376) 0.208 0.518
Anglican 0.572(0.249, 1.312) 0.242 0.187 0.591(0.260, 1.341) 0.247 0.209
Seventh day | 1.037(0.582, 1.851) 0.306 0.900 1.051(0.594, 1.863) 0.306 0.862
Adventist 0.979(0.688, 1.394) 0.177 0.907 0.986(0.696, 1.398) 0.175 0.939
Other Christian 0.851(0.536, 1.353) 0.201 0.496 0.871(0.552, 1.375) 0.202 0.554
Muslim 11.671(1.362, 99.929) 12.784 0.025 11.238(1.410, 89.554) 11.901 0.022
other

Type of birth

Single(ref) 1.000

1% of Multiple 2.126(1.017, 4.443) 0.799 0.045 2.071(1.003, 4.278) 0.766 0.049
2" of multiple 2.957(1.564, 5.591) 0.960 <0.001 2.881(1.545, 5.374) 0.916 0.001
Source of drinking

water

Piped into | 1.00

dwelling(ref) 0.671(0.261, 1.724) 0.323 0.407 0.670(0.265, 1.695) 0.317 0.399
Piped to yard 0.177(0.042, 0.743) 0.129 0.018 0.186(0.045, 0.770) 0.134 0.020
Piped to neighbor 0.354(0.132, 0.952) 0.178 0.040 0.381(0.145, 1.001) 0.187 0.050
Public tap 0.315(0.121, 0.821) 0.154 0.018 0.339(0.133, 0.864) 0.161 0.023
Tube well/borehore 0.206(0.057, 0.746) 0.135 0.016 0.227(0.064, 0.808) 0.147 0.022
Protected well 0.291(0.103, 0.826) 0.155 0.020 0.314(0.113, 0.869) 0.163 0.026
Unprotected well 0.350(0.100, 1.226) 0.223 0.101 0.372(0.109, 1.26) 0.232 0.114
Unprotected spring 0.248(0.080, 0.773) 0.144 0.016 0.270(0.089, 0.819) 0.153 0.021
River/dam 0.160(0.017, 1.496) 0.183 0.108 0.166(0.018, 1.518) 0.187 0.112
Not a dejure resident

Mothers’  highest

education

No education(ref) 1.00

Primary 1.133(0.764, 1.681) 0.227 0.535 1.132(0.766, 1.673) 0.225 0.532
Secondary 0.897(0.529, 1.524) 0.242 0.690 0.910(0.535, 1.537) 0.243 0.727
higher 0.169(0.021, 1.349) 0.179 0.094 0.175(0.022, 1.379) 0.184 0.098
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Table 18: CONT OF PARAMETRIC FRAILTY MODELS

Sex of household
head

Male(ref) 1.00
female 1.37(1.028, 0.194 0.032 | 1.366(1.035, 1.802) 0.193 0.027
1.801)
Mothers’ age group
15-19(ref) 1.00
20-24 1.431(0.917, | 0.324 0.114 | 1.457(0.938, 2.264) 0.327 0.094
25-29 2.232) 0.338 0.196 | 1.378(0.854, 2.223) 0.336 0.189
30-34 1.375(0.849, | 0.341 0.257 | 1.348(0.821, 2.214) 0.341 0.237
35-39 2.227) 0.438 0.081 | 1.602(0.942, 2.723) 0.411 0.082
40-44 1.336(0.809, | 1.123 <0.001 | 3.798(2.114, 6.825) 1.135 <0.001
45-49 2.204) 1.943 <0.001 | 5.415(2.736, 10.719) 1.886 <0.001
1.607(0.943,
2.746)
3.692(2.034,
6.703)
5.538(2.699,
10.955)
Area of residence
Urban(ref) 1.00
rural 1.525(0.887, | 0.421 0.127 | 1.499(0.878, 2.558) 0.408 0.137
2.623)
Size of child
Very large(ref) 1.00
Larger than average | 0.916(0.540, | 0.24 0.747 | 0.929(50.51, 1.567) 0.24 0.783
Average 1.555)
Smaller than average 0.24 0.998 | 1.001(0.614, 1.632) 0.24 0.997
Very small 1.00(0.610, 0.50 0.037 | 1.748(1.013, 3.016) 0.48 0.045
Don’t know 1.640)
1.799(1.036, | 0.37 0.801 | 1.123(0.555, 2.270) 0.37 0.746
3.126) 1.30 0.174 | 2.369(0.789, 7.116) 1.38 0.124
1.096(0.537,
2.239)
2.177(0.7009,
6.679)
constant 0.003(0.000, | 0.002 <0.001 | 0.002(0.000, 0.010) 0.001 <0.001
0.011)
In(p) 0.459(0.357, | 0.052 <0.001 | 0.452(0.3498, 0.555) 0.520 <0.001
In(theta) 0.562) 0.709 0.010 | -15.430(-1261.713, 635.780 | 0.981
-1.836(- 1230.852)
3.228, -
0.445)
p 1.154(1.429, | 0.833 1.572(1.419, 1.743) 0.827
1/p 1.755) 0.033 0.635(0.573, 0.704) 0.334
theta 0.631(0.569, | 0.113 0.056 | 5.32e-07 0.000 1.000
0.699)
0.159(.0039,
0.640)
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4.9 Best Fitting Model Selection

The best fit model was selected using Akakian Information Criteria (AIC) and the Log-

likelihood ratio test. The lowest Akakian Information Criteria and the highest Log-

likelihood ratio value indicates the best fit model. For both the household and community

effects models, the Weibull-gamma frailty models were found to be the best fit models

since they had the lowest AIC values as shown in table 19.

Table 19: Model comparison with different distributional assum

tions

Model

Baseline
Hazard

distribution

Frailty
distributi

on

Frailty variance

(p-value)

AlIC

BIC

LRR

Cox model-
household

effects

N/A

gamma

0.174 (0.043)

3873.20

4189.47

-1885.60

Cox model-
community
effects

N/A

gamma

Did not converge

Shared
frailty-
household
effects

Weibull

gamma

0.159 (0.056)

2027.597

2362.472

-959.7985

Shared
frailty-
community
effects

Weibull

gamma

5.32¢-07 (1.000)

2030.136

2363.001

-961.068

Shared
frailty-
household

effects

Log normal

gamma

0.130 (0.90)

2061.138

2396.012

-976.569

Shared
frailty-
community

effects

Log normal

gamma

2.11e-07 (1.000)

2062.941

2397.470

-977.470
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CHAPTER 5

DISCUSSION, CONCLUSION AND RECOMMENDATIONS

The first section of this chapter provides a discussion of the results presented in the
previous chapter, the conclusion is provided in the second section and finally

recommendations in the last section.

5.1 Discussion

This study used survival analysis and frailty modelling to examine the factors that are
associated with infant mortality in Malawi. The descriptive statistics for age of child in
months indicate that the mean for infants who died is 2.25 months which is in agreement
with what was reported by (UNICEF DATA, 2020) that a child’s survival is most
vulnerable within the first 28 days of life.

Two groups of mother’s age at child birth were found to have a significant association with
infant mortality in both the log rank test and Cox proportional hazard model. The results
showed that children born from mothers aged 40-44 and 45-49 years had a higher chance
of dying before reaching the age of 1 year compared to children born from mothers aged
15-19 years. This then indicated that women who have children at older age, 40-49 years,
had significantly increased risk of infant mortality in comparison to the women who had
their child at younger ages, less than 18 years. It is expected that children born to young
mothers (aged less than 20 years) and those born to older mothers (aged 40-49 years)
should have higher mortality than those born to mothers aged 20-39 years (Kembo, 2009)
which is similar to what has been found in this study. Young mothers are said to be at

higher risk of experiencing infant mortality due to their emotional and psychological
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immaturity (Dube, 2012) and also because young girls/adolescents delay reacting to
pregnancies might lack knowledge of the correct health-seeking methods with regard to
their pregnancies (Phipps et al., 2002). The results from this study however, are in
contradiction with what Lemani (Lemani, 2013) found when covariates of infant mortality
in Malawi were modelled where it was observed that Children born to mothers aged less
than 20 years had an increased risk of death compared to those born when their mothers
were aged above 20 (Lemani, 2013) and (Dube, 2012) found that women who had children
at a young age had significantly increased chances of infant mortality (59%) in comparison
to the women who had their children at older ages. This contradiction could be because
pregnancy after 40 years of age has a risk of complications such as high blood pressure,
preeclampsia, gestational diabetes and birth abnormalities(Kay & Villines, 2020). This is
why pregnancy after 40 years of age requires quality prenatal care, healthy lifestyle
maintenance and health center delivery which are things that some women in rural
Malawian residence don’t have access to and this might lead to high infant mortality rates

among older women in Malawi.

An interesting finding of this study is that mothers’ highest education had no significant
association with infant mortality which contradicts the studies of (Omariba et al., 2007),
which found that mothers with secondary education had a 20% lower chance of
experiencing infant mortality compared to mothers’ who were not educated. Oftenly,
maternal education is viewed as an indication of level of skills and knowledge of the mother
which help in the effective use of available child care resources such as health services
which is assumed to lower child and infant mortality, however, the findings from this study
indicated that there was no significant association between infant mortality and mother's
education level. This was in agreement with studies such as (Dube, 2012) which found that
education was an insignificant determinant of infant mortality in Zimbabwe and this is
expected because mother's education is more strongly associated with child mortality than
infant mortality (Lemani, 2013). These results were also similar to the (Makoena, 2011)
study on risk factors associated with high infant and child mortality in Lesotho where it
was found that there was no significant association between mother's education and

childhood mortality.
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Religion is a factor that is assumed to play a part in infant mortality because of the different
beliefs that religions have. For example Pentecostalism is usually characterized by less
trust in conventional medicine which make these groups particularly sensitive to the threats
to the welfare of young children which might account for higher infant mortality rates in
communities with a large proportion of Pentecostal churches (Garcia et al., 2012).This
factor was found to be insignificant by the log rank test but after adjusting for other
covariates some of its subcategories were found to be significant in the Cox proportional
hazard model. The results indicated that Children born from families with other religion
category have a higher chance of dying before reaching the age of one year compared to
children born from catholic families. The results from this study are similar to what was
observed in Zimbabwe where religion was significantly associated with infant mortality in
such a way that members of Zionist and Apostolic churches showed a historical higher

infant mortality than members of mission churches(Gregson et al., 1999).

Both the log rank test and Cox proportional hazard model results showed that sex of
household head was a significant covariate. Children born from female headed household
(FHH) were more likely to die before the age of one year compared to children from male
headed households (MHH) headed by males. This is the case because there is a difference
in economic conditions of FHH and MHH in such a way that FHH are generally poorer
than MHH and families with low economic status(poor) usually have higher percentage of
infant deaths due to lack of better access to health services (Gupta, Ashish Kumar,
Borkotoky, 2015).

For the environmental factors, place of delivery and source of drinking water are the
covariates whose subcategories were found to have a significant association with infant
mortality. The results were in agreement with studies such as (Folasade, 2000), which
found that source of drinking water and child mortality were significantly associated in
Nigeria. The (Ezeh, Osita,Agho, 2014) study also had consistent results where it was found
that the mortality from unimproved water and sanitation was significantly higher by 38%

compared to improved water and sanitation.
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The source of drinking water has an impact on infant mortality in a way that children are
more vulnerable to the health hazards associated with unimproved water supply and
sanitation because their immune, respiratory and digestive systems are still developing
(Ezeh, Osita,Agho, 2014). The place of delivery results of this study are in agreement with
the (Ajaari et al., 2012) study which found that there were more neonatal deaths among
deliveries outside health facilities than among deliveries within health facilities. Place of
delivery is a significant predictor of infant mortality because children delivered at a health
facility are likely to experience lower mortality than children delivered at home because
health facilities provide sanitary environment and medically correct birth assistance (Ajaari
etal., 2012).

Infant mortality is higher in boys than girls in most parts of the world and this has been
explained by sex differences in genetic and biological makeup in such a way that boys are
biologically weaker and more susceptible to diseases and premature death (Pongou, 2013).
This study however, had another interesting finding, the Cox proportional hazard model
results indicated that males had a lower chance of dying before reaching the age of one
year than females. These results are in contrast with the (Ashorn et al., 2002) and (Lemani,
2013) studies which found that males had a higher risk of infant mortality compared to

females.

Type of birth was also found to have a highly significant association with infant mortality
in both the log rank analysis and Cox proportional hazard model. It was found that women
who have single births had a lower risk of experiencing infant mortality compared to
mothers who have multiple births. These results are consistent with the results from
(Uthman et al., 2008) study which found that children born multiple births were more than
twice as likely to die during infancy as infants born singleton. A possible reason for this
observation is that multiple births are high-risk births that require special and expensive
care (Uthman et al., 2008). Multiple-birth children are also at a greater risk of birth defects
and disabilities (Uthman et al., 2008).
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Frailty modelling of infant mortality was done using the semi-parametric methods and
parametric methods. For the semi-parametric frailty models to account for
family/household effects and community effects results indicated that infant deaths are
likely to cluster in families due unmeasured factors which is in agreement with studies such
as (Madise & Diamond, 1995) and (Bolstad & Manda, 2001) which found that infant
mortality tend to cluster in families in Malawi. This indicates that there are differences in
infant mortality risks between families and the family effect may be a result of biological
factors, such as hereditary diseases, or different child care practices, immunization and
nutrition (Madise & Diamond, 1995).Whilst for the community effects there was not
enough evidence to show the existence of unobserved heterogeneity at community level
because the model did not converge. This would be expected, because during the infant
period, the child is mostly kept in the house and does not interact much with the community
outside the family. These results are in contrast with the (Omariba et al., 2007) study where
it was found that effects of unmeasured environmental factors and community factors are

important for child mortality.

For the parametric frailty models, the first part, Weibull distribution and gamma frailty
were used to fit the models. It was found that there was not enough evidence that both
household and community effects play a role in infant mortality. The second part used log
normal distribution and gamma frailty, and there was not enough evidence to conclude for

both household and community effects.

5.2 Conclusion

This study examined the factors associated with infant mortality whilst controlling for
household and community effects. It was found that SHH, mothers’ age group, source of
drinking water, religion, type of birth and place of delivery had a significant association
with infant mortality. Particularly, the results indicated that FHH are at a higher risk of
experiencing infant mortality and mothers who had single births had a lower chance of
experiencing infant mortality compared to mothers who had multiple births. They also
indicated that mothers who had children at older ages were at a higher risk of experiencing

infant mortality compared to women who birthed children at younger ages. Furthermore,
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this study found that there existed some unobservable family/household effects which tend

to make infant deaths cluster in some families.

Although Malawi has managed to achieve a significant reduction in infant and child
mortality rates, the rates remain high compared to most African countries as such there is
need for more effort to reduce these mortality rates. This study provided insights into the
risk factors of infant and child mortality in Malawi, which contains vital information for

health policy makers in government and non-governmental organizations.

In conclusion, this study revealed that SHH, mothers’ age group, source of drinking water,
religion, type of birth and place of delivery are associated infant mortality and that there
are unobservable family effects which make infant deaths to cluster in some families. These
factors need to be considered when planning and developing policies against infant

mortality in order to successfully work towards reducing infant mortality rate in Malawi.

5.3 Recommendations

Recommendations from this study are that, mothers should be sensitized on the importance
of having child deliveries in health facilities to avoid birth complications and loss of child
if birthed at home. Women who have a family history of multiple births should be educated
on the high risks that multiple births have and should be closely monitored during
pregnancy. There is also need to identify and educate the religions that deny their members

of traditional and medical medicine about the importance of medicine.

Women should be encouraged to have children before they turn the age of 40 years to avoid
the birth complications which occur due to old age. Families need to be sensitized on the
importance of using clean water as a source of drinking water and teach them ways of
cleaning water such as boiling the water before use. Families which have experienced
multiple infant deaths need to be identified as vulnerable households and studied to find

out what makes them vulnerable and help reduce the infant mortality rate.
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This study has been conducted using nationally representative data with a large sample
size, although this sample is a fragment of the population of the Malawian women who
experienced childbearing in the last five years before data collected, it gives a
representative picture of the population at the time of the MDHS 2015-2016 survey. Thus,
the sample can be understood to be a true reflection of the Malawian women who had given

birth in the last five years prior to the survey.

However, the study had a number of limitations in both data sources and methodology
which might have affected the results. There are some critics that the DHS survey is
associated with which include collection of data from women aged 15-49 who are alive in
a given household which means that no information is collected for mothers who have died
and this creates a bias in the results. It was a challenge to control for community effects

because the MDHS data doesn’t have specific community characteristics.
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APPENDICES

APPENDIX A
Table 20: STATA CODES

1

use "C:\Users\Esther.Khundi\Desktop\school\graphs\dhs2.dta”

gen hypage=(V008-B3)/12

label varhypage "Age of child at interview"

gentimeyears=.

replace timeyears=hypage

replace timeyears=(B7/12) if B5==

gen dead=(B5==0)

label vartimeyears "survival time of the child in years"

©O©| O N o o | W DN

label var dead "the child is dead"

[EEN
o

gen hypmonth=V008-B3

[EEN
[EEN

gentimemonths=.

[EEN
N

replace timemonths=hypmonth

[EEN
w

replace timemonths=B7 if(B5==0)

[EEN
IS

label varhypmonth "age of child in months"

[EEY
a1

gen status=.

[EEN
(op}

replace status=0 if B5==1

[EEN
\‘

replace status=1 if B5==0
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18 | label var status "The survival status of the child"

19 | label define status 1"dead" 0"alive"

20 | label values status status

21 | stsettimemonths, failure(status==1) exit(timemonths==12)

22

tabstattimemonths, by(dead) statistics(n mean sd min g max) columns(statistics) format(%8.2f)

23

tabulate dead B4, row

24

tabulate dead V190, row

25

tabulate dead M18, row

26

tabulate dead V130, row

27

tabulate dead V151, row

68




Table 21: STATA CODES CONTI...

28

tabulate dead V102, row

29

tabulate dead M15, row

30

tabulate dead V113, row

31

tabulate dead V106, row

32

tabulate dead V013, row

33

tabulate dead BO, row

34

Itabletimemonths status

35

sts graph, by(B4) risktablegraphregion(fcolor(white))

36

sts graph, by(V190) risktablegraphregion(fcolor(white))

37

sts graph, by(V013) risktablegraphregion(fcolor(white))

38

sts graph, by(V113) risktablegraphregion(fcolor(white))

39

sts graph, by(\V106) risktablegraphregion(fcolor(white))

40

sts graph, by(V102) risktablegraphregion(fcolor(white))

41

sts graph, by(V151) risktablegraphregion(fcolor(white))

54

sts test V130

55

sts test V151

56

sts test V190

57

stCox i.B41.V190i.M15i.V130i.V106 i.B0i.V113i.V151i.V013i.VvV102 i.M18

58

stCox i.B0
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59

eststo model 1

60

stCox i.V013i.V113i.B0 i.M15i.V151

61

eststomodel_final

62

Irtest model_1 model_final

63

stCox i.B0 i.M15

64

eststo model 2

65

Irtest model_2 model_final

66

stCox i.B0 i.M15i.V013

67

eststo model_3
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Table 22: STATA CODES CONTI...
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68 | Irtest model_3 model_final

69 | stCox i.B01.M15i.V113

70 | eststo model 4

71 | Irtest model 4 model_final

72 | stCox i.B0i.M151i.V113i.V151

73 | eststo model 5

74 | Irtest model_5 model_final

75 | estout model 2 model_3 model 4 model 5 model final, stats(n chi2 bic, star(chi2))
prehead("Betas™)

76 | estatphtest, detail

77 | stphtest, log plot(2.B0) yline(0) graphregion(fcolor(white))

78 | stphtest, log plot(2.B4) yline(0) graphregion(fcolor(white))

79 | stphtest, log plot(12.M15) yline(0) graphregion(fcolor(white))

80 | stphtest, log plot(2.M18) yline(0) graphregion(fcolor(white))

81 | stphtest, log plot(2.VV102) yline(0) graphregion(fcolor(white))

82 | stphtest, log plot(2.VV106) yline(0) graphregion(fcolor(white))

83 | stphtest, log plot(2.VV013) yline(0) graphregion(fcolor(white))

84 | stphtest, log plot(12.V113) yline(0) graphregion(fcolor(white))

85 | stCox i.B41.V190i.M15i.v130i.B0i.V113i.V106i.V151i.V013i.v102 i.M18,shared(VV002)

86 | estatic

87 | stCox i.B41.V190i.M15i.v130i.B0i.V1131i.V106i.V151i.V013i.vV102 i.M18,shared(\V001)
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88

streg i.B4 i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.v151 i.V013 i.V102 i.M18, dist(weib)
frailty(gamma) shared(\VV002)

89

estatic

90

streg 1.B4 1.V190 i.M15 i.V130 i.BO i.V113 i.V106 i.V151 i.V013 i.V102 i.M18, dist(weib)
frailty(gamma) shared(\VV001)

91

estatic

92

streg i.B4i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.V151 i.V013 i.V102 i.M18, dist(Inormal)
frailty(gamma) shared(\V002)

93

estatic

94

streg 1.B4 i.V190 i.M15 i.V130 i.B0 i.V113 i.V106 i.V151 i.V013 i.V102 i.M18, dist(Inormal)
frailty(gamma) shared(\VV001)

95

estatic
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APPENDIX B

Kaplan-Meier survival estimates
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Figure 8: Survival estimates by type of birth
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Figure 9: Survival estimates by mother’s education
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Kaplan-Meier survival estimates
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Figure 11: Survival estimates by place of delivery

75



Kaplan-Meier survival estimates
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Figure 12: Survival estimates by area of residence

Kaplan-Meier survival estimates

o

S R

—

K) ‘;: |

e — I I
e

o | —

3 - —— —

o

Lo

N -

o

o

S _

o T T T T
5 10 15

time in months

V130 = Catholic
V130 = Anglican V130 = Seventh Day Adventist / Baptist
V130 = Other Christian V130 = Muslim
V130 = No religion V130 = Other

V130 = CCAP

Figure 13: Survival estimates by religion
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Kaplan-Meier survival estimates
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Figure 14: Survival estimates by size at birth
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Figure 16: Residual plot for Place of Delivery
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Running mean smoother
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Figure 18: Residual plot for Sex of household head

79



APPENDIX C

Table 23: Log normal frailty model for household effects

Covariate

B4

Female

V190

Poorer
Middle
Richer

Richest

M15

Other home

Government..

Government..

Government..

Other publ..

Private ho..

CHAM / MIS..

CHAM / MIS..

Other

V130
CCAP
Anglican

Seventh Da..

Coefficient  Std Error z P>z [95% Conf. Interval]
-.082 0.096 -0.86 0.391 (-0.272,0.106)

-0.134  0.141 -0.95/0.341 (-0.411,0.142)
-0.190 0.149-1.28 0.202 (-0.483, 0.102)
0.130 0.164 0.80 0.427(-0.191, 0.452)

0.145 0.220 0.66 0.511 (-0.288,0.578)
-0.404 0.460-0.88 0.380 (-1.308,0.498)
-0.098 0.281 -

. 0.725 (-0.651, 0.453)
-0.257 0.272 -0.94 0.346 (-0.792,0.277)
-0.304 0.512 -0.59 0.553 (-1.307,0.699)
5.191 36029.33 0.00 1.000( -70610.99, 70621.37)
-0.946 0.393-2.40 0.016 (-1.717,-0.175)
0.135 0.342 0.390.693 (-0.535,0.805)
-0.530 0.332 -1.60/0.110 (-1.183,0.121)
-0.011 0.506 -0.020.981 (-1.005,0.981)
0.106 0.180 0.59 |0.557(-0.248,0.460)

0.566  0.314 1.800.071 (-0.049, 1.182)

0.088 0.227 0.39/0.699 (-0.358,0.534)

80



Other Chri..

Muslim

No religion

Other

BO

1st of mul..

2nd of mul..

V113
Piped toy..
Piped to n..

Public tap..

Tube well ..

Protected ..

Unprotecte..

Protected ..

Unprotecte..

River/dam/..

Rainwater

Other

Not a deju..

V106

Primary

0.045 0.137

0.200 0.179
7.8633370.088 0.00
-1.877  1.132

1.66

-0.518 0.318-1.63
-0.814 0.286
2.84

0.319 0.3720.86

1.426  0.526
0.812 0.389
0.995 0.388
1.395  0.506
0891 0421

8.118 4764.516 0.00
0.835 0.510
1.147  0.450

6.860 84065.43 0.00

7.847  6785.0510.00
1.883  0.970

-0.137 0.157

0.330.742

(-0.223,0.313)

1.120.264 (-0.151,0.552)

0.998

(-6597.388, 6613.115)

10.097(-4.096,0.341)

0.104

10,005

(-1.144, 0.106)

(-1.376, -0.251)

0.390(-0.409.1.049)

2.710.007
2.08 0.037
2.560.010
2.76 0.006
2.12 0.034

0.999
1.64 0.102
2.550.011

1.000

164772.1)

0.999
1.94 10.052

-0.880.380

81

(0.395, 2.458)
(0.048, 1.575)
(0.233, 1.757)
(0.403, 2.388)
(0.065, 1.716)

(-9330.161, 9346.398)
(-0.164, 1.835)
(0.264, 2.029)

(-164758.4,

(-13290.61, 13306.3)

(-0.019, 3.786)

(-0.445,0.169)



Secondary

Higher

V151

Female

V013

20-24

25-29
30-34
35-39
40-44

45-49

V102

Rural

M18

Larger tha..

Average

Smaller th..

Very small

Don't know

_cons

-0.095
0.48

0.940

-0.221
1.99

-0.219
1.36

-0.278
-0.184
-0.376
-0.896
-1.421

-0.370

0.106

-0.058
0.31

-0.504

-0.027
0.09

-0.713

1.660

0.201

0.593

0.111

0.162

0.175

0.185

0.200
0.250
0.326

0.208

0.202

0.188

0.215
0.290

0.459

0.548

*10.634(-0.490,0.299)

1.580.113

10,046

0175

(-0.222, 2.104)

(-0.440, -0.003)

(-0.537, 0.097)

-1.5910.112(-0.621,0.064)

-0.99/0.321
-1.88/0.060
-3.580.000
-4.35/0.000

-1.770.076

(-0.547,0.179)
(-0.770,0.016)
(-1.387, -0.405)
(-2.061, -0.781)

(-0.779,0.038)

0.52 0.600(-0.290, 0.503)

0754
-2.3410.019
" 0.924

-1.55/0.120

3.03 0.002

82

(-0.427, 0.309)

(-0.926, -0.082)

(-0.597, 0.542)

(-1.612, 0.186)

(0.585, 2.736)



/In_sig

/In_the

sigma

theta

Likelihood-

ratio

0354  0.047 7.49/0.000
0.014
-2.035  0.827 -2.46
0.412)
1426 0.067 1299  1.564
0130  0.108 0.0258 0.661

test of theta=0: chibar2(01) =1.80 |Prob>=chibar2 = 0.090

83

(0.262, 0.447)
(-3.657, -



Table 24: Log normal frailty model for community effects

t

B4

Female

V190

Poorer
Middle
Richer

Richest

M15

Other home
Government..
Government..
Government..
Other publ..

Private ho..

CHAM / MIS..

CHAM / MIS..

Other

V130

CCAP
Anglican
Seventh Da..
Other Chri..

Muslim

Coef. Std. Err z

-.0804336 .0963455 -0.83

-.1338625 .140941 -0.95
-.1978521 .1485672 -1.33
1255289 .1637349 0.77
1352733 .2196273 0.62

-.3775234 4577643 -0.82
-.1002638 .2813505 -0.36
-.2538095 .2724146 -0.93
-.2956098 .5091125 -0.58
7.310202 6246195 0.00

-.9175255 .3900044 -2.35
1264909 .3415179 0.37

-.5240594 .3316949 -1.58
-.0268422 .5077041 -0.05

1037142 .1805522 0.57
.5505175 .3135294 1.76
0737437 .2272455 0.32
.0373721 .13636 0.27

1876383 .1788422 1.05

P>z

0.404

0.342
0.183
0.443

0.538

0.410
0.722
0.351
0.561
1.000
0.019
0.711
0.114

0.958

0.566
0.079
0.746
0.784

0.294

84

[95% Conf. Interval]

-.2692673 .1084001

-.4101018 .1423769
-.4890384 .0933342
-.1953856 .4464435
-.2951883 .5657349

-1.274725 .5196781
-.6517007 .4511732
-. 7877323 .2801134
-1.293452 .7022324
-1.22e+07 1.22e+07
-1.68192 -.1531311
-.5428718 .7958537
-1.17417 .1260506

-1.021924 .9682396

-.2501616 .4575901
-.0639888 1.165024
-.3716492 .5191367
-.2298886 .3046328

-.1628861 .5381626



No religion

Other

BO
1st of mul..

2nd of mul..

V113

Piped toy..
Piped to n..
Public tap..
Tube well ..

Protected ..

Unprotecte..

Protected ..

Unprotecte..

River/dam/..

Rainwater
Other

Not a deju..

V106
Primary
Secondary
Higher
V151

Female

10.27827 921345.3 0.00

-1.921634 1.132423 -1.70

-.5049252 .3164683 -1.60

-.8030826 .2841468 -2.83

.324351 .3690399 0.88
1.4074 .5240106 2.69
.7804939 .3857908 2.02
.9598354 .3840331 2.50
1.348098 .5037817 2.68
.8564605 .4161914 2.06
10.21098 653828.6 0.00
.8114336 .5050576 1.61
1.103921 .4461117 2.47
8.760713 9609659 0.00
10.10654 1506550 0.00

1.880139 .9698175 1.94

-.1365481 .1571049 -0.87
-.0988768 .2014273 -0.49
9296382 .5929107 1.57

-.2279418 .1110751 -2.05

85

1.000
0.090

0.111

0.005

0.379
0.007
0.043
0.012
0.007
0.040
1.000
0.108
0.013
1.000
1.000

0.053

0.385
0.624

0.117

0.040

-1805793 1805814

-4.141142 2978731

-1.125192 .1153412

-1.36 -.2461651

-.3989538 1.047656
3803577 2.434441
0243578 1.53663
2071443 1.712527
.3607036 2.335492
.0407403 1.672181
-1281470 1281491
-.178461 1.801328
2295579 1.978284
-1.88e+07 1.88e+07
-2952774 2952794
-.0206681 3.780947

-.4444681 .1713719
-.4936671 .2959134

-.2324455 2.091722

-.445645 -.0102386



V013
20-24
25-29
30-34
35-39
40-44
45-49
V102

Rural

M18
Larger tha..
Average
Smaller th..
Very small

Don't know
_cons
/In_sig
/In_the
sigma

theta

Likelihood-

ratio

-.2320593 .1618395 -1.43
-.281676 .1747884 -1.61

-.1919769 .1852599 -1.04
-.3763069 .2003535 -1.88
-.9216202 .2488654 -3.70

-1.431121 .3225633 -4.44

-.3599173 .2078115 -1.73

.0990319 .2024025 0.49

-.0570779 .1877803 -0.30
-.4919836 .2145574 -2.29
-.0403739 .2903094 -0.14

-.7720519 .4597998 -1.68
1.712176 .5450584 3.14

.3601193 .0471199 7.64
-15.37195 557.3202 -0.03

1.4335 .0675464

2.11e-07 .0001175

test of theta=0: chibar2(01)

86

0.152
0.107
0.300
0.060
0.000
0.000

0.083

0.625
0.761
0.022
0.889

0.093

0.002

0.000
0.978

1.307041
1.572195

0.00

-.549259 .0851403
-.6242551 .060903
-.5550797 .1711259
-.7689927 .0163788
-1.409387 -.4338529
-2.063334 -.798909

-.71672204 .0473858

-.2976698 .4957336
-.4251204 .3109647
-.9125085 -.0714588
-.6093698 .528622

-1.673243 .1291393

643881 2.780471

267766 4524726

-1107.699 1076.956

Prob>=chibar2
1.000



